
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

THESIS 
  

Approved for public release; distribution is unlimited 

DETECTION AND CLASSIFICATION OF LOW PROBABILITY 
OF INTERCEPT RADAR SIGNALS USING PARALLEL FILTER 

ARRAYS AND HIGHER ORDER STATISTICS 
 

by 
 

Fernando L. Taboada 
 

September 2002 
 

      Thesis Advisor:                                 Phillip E. Pace 
Co-Advisor:                                      Herschel H. Loomis Jr. 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY  
 

2. REPORT DATE  
September, 2002 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE:   
Detection and Classification of LPI Radar Signals using Parallel Filter Arrays and 
Higher Order Statistics.  

6. AUTHOR(S)   
    Major Fernando L. Taboada  

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
     AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT  
 

The term Low Probability of Intercept (LPI) is that property of an emitter that because of its low power, 
wide bandwidth, frequency variability, or other design attributes, makes it difficult to be detected or identified by 
means of passive intercept devices such as radar warning, electronic support and electronic intelligence receivers. 
In order to detect LPI radar waveforms new signal processing techniques are required.  
This thesis first develops a MATLAB® toolbox to generate important types of LPI waveforms based on frequency 
and phase modulation. The power spectral density and the periodic ambiguity function are examined for each 
waveform. These signals are then used to test a novel signal processing technique that detects the waveform 
parameters and classifies the intercepted signal in various degrees of noise. The technique is based on the use of 
parallel filter (sub-band) arrays and higher order statistics (third-order cumulant estimator). Each sub-band signal 
is treated individually and is followed by the third-order estimator in order to suppress any symmetrical noise that 
might be present. The significance of this technique is that it separates the LPI waveform in small frequency 
bands, providing a detailed time-frequency description of the unknown signal. Finally, the resulting output matrix 
is processed by a feature extraction routine to detect the waveform parameters. Identification of the signal is based 
on the modulation parameters detected. 
 
 

15. NUMBER OF 
PAGES  

297 

14. SUBJECT TERMS     Low probability of Intercept Radar Signals, Signal processing, Filter bank, 
Higher Order Statistics, Cumulants. 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 

 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 
 

DETECTION AND CLASSIFICATION OF LOW PROBABILITY OF INTERCEPT 
RADAR SIGNALS USING PARALLEL FILTER ARRAYS AND HIGHER ORDER 

STATISTICS 
 

Fernando L. Taboada 
Major, Venezuelan Army 

B.S., Armed Forces University, 1993 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN SYSTEMS ENGINEERING 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2002 

 
 

Author:         
Fernando L. Taboada 

 
 

Approved by:         
 

Phillip E. Pace 
  Thesis Advisor 

 
 
 

Herschel H. Loomis Jr. 
Co-Advisor 

 
 

 
Dan C. Boger 
Chairman, Information Sciences Department 

 



 iv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 
 
 
 
Low probability of intercept (LPI) is that property of an emitter that because of its 

low power, wide bandwidth, frequency variability, or other design attributes, makes it 

difficult to be detected or identified by means of passive intercept devices such as radar 

warning, electronic support and electronic intelligence receivers. In order to detect LPI 

radar waveforms new signal processing techniques are required.  

This thesis first develops a MATLAB® toolbox to generate important types of LPI 

waveforms based on frequency and phase modulation. The power spectral density and the 

periodic ambiguity function are examined for each waveform. These signals are then 

used to test a novel signal processing technique that detects the waveform parameters and 

classifies the intercepted signal in various degrees of noise. The technique is based on the 

use of parallel filter (sub-band) arrays and higher order statistics (third-order cumulant 

estimator). Each sub-band signal is treated individually and is followed by the third-order 

estimator in order to suppress any symmetrical noise that might be present. The 

significance of this technique is that it separates the LPI waveform in small frequency 

bands, providing a detailed time-frequency description of the unknown signal. Finally, 

the resulting output matrix is processed by a feature extraction routine to detect the 

waveform parameters. Identification of the signal is based on the modulation parameters 

detected. 

 

 

 

 

 

 
 
 
 
 
 
 



 vi

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vii

TABLE OF CONTENTS 
 

I. INTRODUCTION........................................................................................................1 
A. OVERVIEW OF LPI RADAR SIGNALS.....................................................1 

1. Low Probability of Intercept Radar Signals .....................................1 
2. Characteristics of LPI Radar Signals ................................................3 
3.  LPI Intercept Receivers.......................................................................7 

B.  PRINCIPAL CONTRIBUTIONS ..................................................................9 
C.  THESIS OUTLINE........................................................................................10 

II. LOW PROBABILITY OF INTERCEPT EMITTERS AND THEIR 
SPECTRAL PROPERTIES......................................................................................13 
A.  BINARY PHASE SHIFT-KEYING.............................................................13 
B.  FREQUENCY MODULATED CONTINUOUS WAVE ...........................17 
C. FRANK CODE...............................................................................................21 
D. P1 CODE.........................................................................................................26 
E.  P2 CODE.........................................................................................................29 
F. P3 CODE.........................................................................................................32 
G. P4 CODE.........................................................................................................35 
H.  COSTAS CODE.............................................................................................38 
I. PHASE SHIFT KEYING/FREQUENCY SHIFT KEYING. ....................44 
J. FSK/PSK COMBINED WITH TARGET-MATCHED FREQUENCY 

HOPPING.......................................................................................................47 
K. LOW PROBABILTY OF INTERCEPT SIGNAL GENERATOR ..........50 

1. LPI Signal Generator – Main Program...........................................52 
2. BPSK ...................................................................................................53 
3. FMCW ................................................................................................55 
4. Polyphase-coded signals: Frank code, P1, P2, P3 and P4 ..............56 
5. Costas code .........................................................................................58 

III. SIGNAL PROCESSING: PARALLEL FILTER ARRAYS AND HIGHER 
ORDER STATISTICS ..............................................................................................61 
A.  OVERVIEW OF SIGNAL PROCESSING.................................................61 
B.  UNIFORM ARRAY OF FILTERS..............................................................63 

1.  Background of Filter Bank ......................................................................63 
2.  The Design of a Uniform Filter Bank...............................................64 
3. Responses of the Parallel Filter Array to Different LPI Signals ...67 

a.  BPSK........................................................................................67 
b.  FMCW .....................................................................................69 
c.  Polyphase code P4...................................................................71 
d. Costas Code .............................................................................73 

C.  HIGHER ORDER STATISTICS (ESTIMATORS)...................................75 
1. Introduction to Higher-Order Estimators.......................................75 
2. Mathematical implementation of HOS ............................................77 
3. Implementation of the Parallel Filter Arrays and HOS.................81 

a. Graphic User Interface (GUI). ...............................................81 



 viii

b.  Main Program. ........................................................................83 
c. Resulting Plots for Different LPI Radar Signals...................83 

IV. ANALYSIS OF RESULTS........................................................................................89 
A. TEST SIGNAL...............................................................................................90 

1.  Single tone...........................................................................................91 
2. Two-frequency tone ...........................................................................94 

B.  BPSK ...............................................................................................................97 
1. BPSK, 7-bit Barker code, 5 cycles per phase and signal only........98 
2. BPSK, 7-bit Barker code, 5 cycles per phase and SNR=0 dB......102 
3. Summary...........................................................................................106 

C. FMCW ..........................................................................................................107 
1. FMCW ∆F=500 Hz tm=20 ms signal only ......................................108 
2. FMCW ∆F=500 Hz tm=20 ms SNR= 0 dB......................................111 
3. Summary...........................................................................................114 

D. FRANK POLYPHASE CODE ...................................................................115 
1. Frank Code, N=16, cycles per phase =5 and signal only ..............116 
2. Frank Code, N=16, cycles per phase =5 and SNR=0 dB ..............121 
3. Summary...........................................................................................126 

E.  P1 POLYPHASE CODE .............................................................................127 
1. P1 Code N=64 cycles per phase =5 signal only..............................128 
2. P1 Code N=64 cycles per phase =5 SNR=0 dB..............................132 
3. Summary...........................................................................................136 

F. P2 POLYPHASE CODE .............................................................................137 
1. P2 Code, N=16, cycles per phase =5 and signal only ....................138 
2. P2 Code, N=16, cycles per phase =5 and SNR= 0 dB....................142 
3. Summary...........................................................................................147 

G. P3 POLYPHASE CODE .............................................................................148 
1. P3 Code, N=64, cycles per phase =1 and signal only ....................149 
2. P3 Code, N=64, cycles per phase =1 and SNR=0 dB.....................153 
3. Summary...........................................................................................157 

H. P4 POLYPHASE CODE .............................................................................158 
1. P4 Code, N=64, cycles per phase =5 and signal only ....................159 
2. P4 Code, N=64, cycles per phase =5 and SNR=0 dB.....................163 
3. Summary...........................................................................................167 

I. COSTAS CODE...........................................................................................168 
1. Costas code, sequence 1, time in frequency 10 ms, signal only....169 
2. Costas code, sequence 1, time in frequency 10 ms, SNR=0 dB ....172 
3. Summary...........................................................................................176 

J. FSK/PSK COMBINED WITH COSTAS CODE .....................................177 
1. FSK/PSK costas, bits in code =5, cycle per bit =1, signal only.....178 
2. FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB....183 
3. Summary...........................................................................................187 

K.  FSK/PSK TARGET.....................................................................................188 
1. FSK/PSK Target, phases =128, cycle per phase =5, signal only ..189 
2. FSK/PSK Target, phases =128, cycle per phase =5, SNR=0 dB ..193 



 ix

3. Summary...........................................................................................196 
L. COMPARISON OF DIFFERENT POLYPHASE-CODED SIGNALS .197 

1. Frank Code.......................................................................................198 
2. P1 .......................................................................................................199 
3. P2 .......................................................................................................200 
4. P3 .......................................................................................................201 
5. P4 .......................................................................................................202 

V. CONCLUSIONS AND RECOMMENDATIONS.................................................205 
A. CONCLUSIONS ..........................................................................................205 
B. RECOMMENDATIONS.............................................................................205 

APPENDIX A. LPI SIGNAL GENERATOR MAIN PROGRAM AND SUB-
PROGRAMS ............................................................................................................207 

APPENDIX B.  MATLAB PROGRAM FOR PARALLEL FILTER AND HOS.257 

GLOSSARY OF ACRONYMS ..........................................................................................267 

LIST OF REFERENCES....................................................................................................269 

INITIAL DISTRIBUTION LIST .......................................................................................271 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 x

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xi

LIST OF FIGURES 
 
 
 

Figure 1 Comparison of a Pulsed Radar and a CW Radar ( from [1]). ............................5 
Figure 2 Receiver Sensitivity (from [2]). .........................................................................6 
Figure 3 Regions of minimum and maximum atmospheric absorption for millimeter 

wave spectrum   (from [3]). ...............................................................................7 
Figure 4 Overview of the parallel filtering and HOS.......................................................9 
Figure 5 BPSK transmitter block diagram. ....................................................................13 
Figure 6 (a) Sampled signal  and modulating signal in red  (b) modulated signal for 

a 13-bit Barker code BPSK signal. ..................................................................14 
Figure 7 PSD of a BPSK signal modulated with 13-bit Barker code.............................15 
Figure 8 Sampled 13-bit BPSK signal (a) without noise and (b) with SNR = 0 dB. .....15 
Figure 9 (a) Contour plot of the PAF for a BPSK signal modulated with 13-bit 

Barker code. (b) Cut along the 0 Doppler and (c) 0 delay axis. ......................16 
Figure 10 Linear frequency modulated triangular waveform and the Doppler shifted 

return signal. ....................................................................................................17 
Figure 11 Triangular modulating signal for a FMCW. ....................................................19 
Figure 12 PSD of the FMCW signal described in Figure 11. ..........................................19 
Figure 13 FMCW signal (a) PAF,  (b) Cut along 0 Dopplerb and (c) Cut along 0 

delay.................................................................................................................20 
Figure 14 Phase shift in radians versus index in the matrix for N=4. ..............................22 
Figure 15 PSD for a Frank-coded signal with N=4. .........................................................23 
Figure 16 Time domain plot for a Frank-coded signal with N=4 and SNR=0 dB............24 
Figure 17 Contour plot of the PAF for a Frank-coded signal with N=4 ..........................25 
Figure 18 Cuts along the 0 Doppler and 0 delay axis. .....................................................25 
Figure 19 Phase shift for a P1-coded signal with N=8. ....................................................26 
Figure 20 PSD for a P1-coded signal with N=8. ..............................................................27 
Figure 21 Time domain plot of a P1-coded signal with N=8. ..........................................27 
Figure 22 Contour plot of the Ambiguity Function for a P1-coded signal with N=8. .....28 
Figure 23 Cuts along the 0 Doppler and 0 delay axis of the PAF for a P1-coded 

signal with N=8. ...............................................................................................28 
Figure 24 Phase shift for a P2-coded signal with N=8. ....................................................29 
Figure 25 PSD for a P2 coded-signal with N=8. ..............................................................30 
Figure 26 Time domain plot of a P2-coded signal with N=8. ..........................................30 
Figure 27 Contour plot of the PAF for a P2-coded signal with N=8. ..............................31 
Figure 28 Cuts along the 0 Doppler and 0 delay axis of the PAF for a P2-coded 

signal with N=8. ...............................................................................................31 
Figure 29 Phase shift for a P3-coded signal with N=64. ..................................................33 
Figure 30 PSD for a P3-coded signal with N=64. ............................................................33 
Figure 31 Time domain plot of a P3-coded signal with N=64. ........................................34 
Figure 32 Contour plot of the PAF for a P3-coded signal with N=64. ............................34 
Figure 33 Cuts along the 0 Doppler and 0 delay axis of the PAF for a P3-coded 

signal. ...............................................................................................................35 



 xii

Figure 34 Phase shift for a P4-coded signal with N=64 phases. ......................................36 
Figure 35 PSD for a P4-coded signal with N=64. ............................................................36 
Figure 36 Time domain plot of a P4-coded signal with N=64. ........................................37 
Figure 37 Contour plot of the PAF for a P4-coded signal with N=64. ............................37 
Figure 38 P4-coded signal  PAF (a) Cuts along the 0 Doppler and (b) 0 delay axis. ......38 
Figure 39 Binary matrix representation of (a) quantized linear FM and (b) Costas 

Signal ...............................................................................................................39 
Figure 40 (a) The coding matrix (b) difference matrix and (c) ambiguity sidelobe 

matrix of a Costas signal..................................................................................40 
Figure 41 PSD for a Costas signal....................................................................................41 
Figure 42 Time domain plot of a Costas-coded signal.....................................................41 
Figure 43 3-D PAF for a Costas-coded signal with sequence 2-6-3-8-7-5-1...................42 
Figure 44 Contour plot of the PAF for the Costas-coded signal with sequence 2-6-3-

8-7-5-1..............................................................................................................42 
Figure 45 Cut along the 0 Doppler axis. ..........................................................................43 
Figure 46 Cut along the 0 delay axis. ...............................................................................43 
Figure 47 FSK/PSK (a) block diagram, (b) General FSK/PSK signal containing NF 

frequency hops with NP phase slots per frequency. (from [8] ). ......................45 
Figure 48 PSD for a Costas-coded signal.........................................................................46 
Figure 49 PSD of a FSK/PSK Costas-coded signal. ........................................................46 
Figure 50 Block diagram of the implementation of the FSK/PSK Target matched 

waveform. ........................................................................................................48 
Figure 51 (a) FSK/PSK target 64 frequency components and frequency probability 

distribution (b) FSK/PSK target 64 frequency components histogram with 
number of occurrences per frequency for 256 frequency hops........................49 

Figure 52 Block diagram of the LPI signal Generator. ....................................................51 
Figure 53 LPI signal generator main menu. .....................................................................52 
Figure 54 BPSK menu......................................................................................................53 
Figure 55 BPSK Signal Generator screen shot. ...............................................................54 
Figure 56 FMCW sub- menu............................................................................................55 
Figure 57 FMCW Signal generator screen shot. ..............................................................56 
Figure 58 Frank-coded Signal Generator main menu. The sub-menu for generating 

all the polyphase signals are equal...................................................................57 
Figure 59 Polyphase-coded signal generator screen shot.................................................58 
Figure 60 Costas code sub-menu......................................................................................59 
Figure 61 Costas sequence menu. ....................................................................................59 
Figure 62 Costas signals generator...................................................................................60 
Figure 63 Overview of the proposed signal processing based on filter banks and 

HOS..................................................................................................................62 
Figure 64 Magnitude function of the prototype low pass filter........................................64 
Figure 65 Final sine cosine filter bank .............................................................................66 
Figure 66 Response of the filter bank for a BPSK signal without noise..........................67 
Figure 67 Response of the filter bank for a BPSK signal with SNR=0 dB......................68 
Figure 68 Response of the filter bank for a BPSK signal with SNR=-5 dB. ...................68 
Figure 69 Response of the filter bank for a FMCW signal without noise........................69 



 xiii

Figure 70 Response of the filter bank for a FMCW signal with SNR=0 dB. ..................70 
Figure 71 Response of the filter bank for a FMCW signal with SNR=-5 dB. .................70 
Figure 72 Response of the filter bank for a P4 signal without noise................................71 
Figure 73 Response of the filter bank for a P4 signal with SNR=0 dB. ..........................72 
Figure 74 Response of the filter bank for a P4 signal with SNR=-5 dB. .........................72 
Figure 75 Response of the filter bank for a Costas  signal without noise. .......................73 
Figure 76 Response of the filter bank for a Costas signal with SNR= 0dB. ....................74 
Figure 77 Response of the filter bank for a Costas signal with SNR= -5dB....................74 
Figure 78 The higher-order spectral classification map of a discrete signal X(k). F[.] 

denotes n-dimensional Fourier Transform. (From[11] )..................................75 
Figure 79 Graphic User Interface for the execution of the filter bank and calculation 

of the HOS. ......................................................................................................82 
Figure 80 Resulting plots from the signal processing: before and after HOS and two 

differents views, amplitude-frequency and amplitude-filters (signal only).....84 
Figure 81 Resulting plots from a FMCW signal: before and after HOS and two 

differents views, amplitude-frequency and amplitude-filters (SNR = 0 dB)...85 
Figure 82 Resulting plots from a P4 signal : before and after HOS and two different 

views, amplitude-frequency and amplitude-filters (signal only). ....................86 
Figure 83 Resulting plots from a P4 signal : before and after the HOS and two 

different views, amplitude-frequency and amplitude-filters (SNR = -5 dB). ..87 
Figure 84 Single tone  PSD. .............................................................................................91 
Figure 85 Single Tone output of the parallel filter arrays. ...............................................92 
Figure 86 Single tone output after HOS...........................................................................92 
Figure 87 Single tone amplitude-frequency plot. .............................................................93 
Figure 88 Two-frequency tone  PSD................................................................................94 
Figure 89 Two-frequency signal output of the parallel filter arrays. ...............................95 
Figure 90 Two-frequency signal output after HOS..........................................................96 
Figure 91 Two-frequency signal amplitude-frequency plot after HOS. ..........................96 
Figure 92 BPSK, 7-bit Barker code, 5 cycles per phase and signal only PSD.................99 
Figure 93 BPSK, 7-bit Barker code, 5 cycles per phase and signal only (a) Output of 

the parallel filter arrays  (b) Output after HOS. .............................................100 
Figure 94 BPSK, 7-bit Barker code, 5 cycles per phase and signal only, zoom in the 

output  after HOS. ..........................................................................................101 
Figure 95 BPSK, 7-bit Barker code, 5 cycles per phase and signal only, amplitude-

frequency plot . ..............................................................................................101 
Figure 96 BPSK, 7-bit Barker code, 5 cycles per phase and SNR=0 dB PSD. .............103 
Figure 97 BPSK, 7-bit Barker code, 5 cycles per phase and SNR=0 dB (a) Output of 

the parallel filter arrays  (b) Output after HOS. .............................................104 
Figure 98 BPSK, 7-bit Barker code, 5 cycles per phase and SNR=0 dB, zoom in the 

output after HOS. ...........................................................................................105 
Figure 99 BPSK, 7-bit Barker code, 5 cycles per phase and SNR=0 dB, amplitude-

frequency plot. ...............................................................................................105 
Figure 100 Performance of the signal processing detecting BPSK signals. ....................106 
Figure 101 FMCW ∆F=500 Hz tm=20 ms signal only PSD.............................................108 



 xiv

Figure 102 FMCW ∆F=500 Hz tm=20 ms signal only (a) Output of the parallel filter 
arrays (b) Output after HOS...........................................................................109 

Figure 103 FMCW ∆F=500 Hz tm=20 ms signal only zoom in output of HOS. .............110 
Figure 104 FMCW ∆F=500 Hz tm=20 ms signal only amplitude-frequency plot. ..........110 
Figure 105 FMCW ∆F=500 Hz tm=20 ms SNR= 0 dB  PSD...........................................111 
Figure 106 FMCW ∆F=500 Hz tm=20 ms SNR= 0 dB (a) Output of the parallel filter 

arrays (b) Output after HOS...........................................................................112 
Figure 107 FMCW ∆F=500 Hz tm=20 ms SNR= 0 dB zoom in the resulting plot after 

HOS................................................................................................................113 
Figure 108 FMCW ∆F=500 Hz tm=20 ms SNR= 0 dB amplitude-frequency plot. .........113 
Figure 109 Performance of the signal processing detecting FMCW signals. ..................114 
Figure 110 Frank Code N=16 cycles per phase =5 signal only PSD ...............................117 
Figure 111 Frank Code N=16 cycles per phase =5 signal only (a) Output of the 

parallel filter arrays  (b) Output after HOS....................................................118 
Figure 112 Frank Code N=16 cycles per phase =5 signal only (a) Zoom in the 

resulting plot after HOS  (b) Phase shift. .......................................................119 
Figure 113 Frank Code N=16 cycles per phase =5 signal only (a) Amplitude-filter plot 

(b) Amplitude-frequency plot. .......................................................................120 
Figure 114 Frank Code N=16 cycles per phase =5 SNR=0 dB PSD. ..............................122 
Figure 115 Frank Code N=16 cycles per phase =5 SNR=0 dB (a)  Output of the 

parallel filter arrays (b) Output after HOS.....................................................123 
Figure 116 Frank Code N=16 cycles per phase =5 SNR=0 dB (a) Zoom in resulting 

plot after HOS  (b) Phase shift: first 4 phases................................................124 
Figure 117 Frank Code N=16 cycles per phase =5 SNR=0 dB (a) Amplitude-filter plot 

(b) Amplitude-frequency plot. .......................................................................125 
Figure 118 Performance of the signal processing detecting Frank-coded signals. ..........126 
Figure 119 P1 Code N=64 cycles per phase =5 signal only PSD. ...................................129 
Figure 120 P1 Code N=64 cycles per phase =5 signal only (a) Output of the parallel 

filter arrays (b) Output after HOS..................................................................130 
Figure 121 P1 Code N=64 cycles per phase =5 Signal only (a) Resulting plot after 

HOS showing parameters (b) First 8 phases from 16 in the signal. ..............131 
Figure 122 P1 Code N=64 cycles per phase =5 SNR=0 dB PSD. ...................................132 
Figure 123 P1 Code N=64 cycles per phase =5 SNR=0 dB (a) Output of the parallel 

filter arrays (b) output after HOS...................................................................133 
Figure 124 P1 Code N=64 cycles per phase =5 SNR=0 dB (a) Zoom in the resulting 

plot after HOS (b) First 8 of a total o 64 phases. ...........................................134 
Figure 125 P1 Code N=64 cycles per phase =5 SNR=0 dB (a) Amplitude-filter plot  

(b) Amplitude-frequency plot. .......................................................................135 
Figure 126 Performance of the signal processing detecting P1-coded signals. ...............136 
Figure 127 P2 Code N=16 cycles per phase =5 Signal only PSD....................................139 
Figure 128 P2 Code N=16 cycles per phase =5 signal only (a) output of the parallel 

filter arrays (b) output after HOS...................................................................140 
Figure 129 P2 Code N=16 cycles per phase =5 signal only (a) zoom in previous plot 

(b) ) Plot showing 4 phases of 16...................................................................141 
Figure 130 P2 Code N=16 cycles per phase =5 signal only, amplitude-frequency plot. .142 



 xv

Figure 131 P2 Code N=16 cycles per phase =5 SNR= 0 dB  PSD. .................................143 
Figure 132 P2 Code N=16 cycles per phase =5 SNR= 0 dB output of the parallel filter 

arrays..............................................................................................................144 
Figure 133 P2 Code N=16 cycles per phase =5 SNR= 0 dB output after HOS. ..............145 
Figure 134 P2 Code N=16 cycles per phase =5 SNR= 0 dB zoom in the resulting plot 

after HOS. ......................................................................................................145 
Figure 135 P2 Code N=16 cycles per phase =5 SNR= 0 dB plot showing 4 phases of 

16....................................................................................................................146 
Figure 136 P2 Code N=16 cycles per phase =5 SNR= 0, amplitude-frequency plot. ......146 
Figure 137 Performance of the signal processing detecting P2-coded signals. ...............147 
Figure 138 P3 Code N=64 cycles per phase =1 signal only PSD. ...................................150 
Figure 139 P3 Code N=64 cycles per phase =1 signal only (a) Output of the parallel 

filter arrays (b) Output after HOS..................................................................151 
Figure 140 P3 Code N=64 cycles per phase =1 signal only (a) zoom in the resulting 

signal after HOS (b) Amplitude-frequency plot. ...........................................152 
Figure 141 P3 Code N=64 cycles per phase =1 SNR=0 dB  PSD. ..................................154 
Figure 142 P3 Code N=64 cycles per phase =1 SNR=0 dB (a) Output of the parallel 

filter arrays (b) Output after HOS..................................................................155 
Figure 143 P3 Code N=64 cycles per phase =1 SNR=0 dB (a) Zoom in the resulting 

plot after HOS (b) Amplitude-frequency plot................................................156 
Figure 144 Performance of the signal processing detecting P3-coded signals. ...............157 
Figure 145 P4 Code N=64 cycles per phase =5 signal only  PSD. ..................................160 
Figure 146 P4 Code N=64 cycles per phase =5 signal only (a) Output of the parallel 

filter arrays (b) Output after HOS..................................................................161 
Figure 147 P4 Code N=64 cycles per phase =5 signal only (a) Zoom in the resulting 

signal after HOS (b) Amplitude-frequency plot. ...........................................162 
Figure 148 P4 Code N=64 cycles per phase =5 SNR=0 dB PSD. ...................................163 
Figure 149 P4 Code N=64 cycles per phase =5 SNR=0 dB output of the parallel filter 

arrays..............................................................................................................164 
Figure 150 P4 Code N=64 cycles per phase =5 SNR=0 dB (a) Plot after HOS (b) 

Zoom in the resulting plot after HOS. ...........................................................165 
Figure 151 P4 Code N=64 cycles per phase =5 SNR=0 dB (a) Amplitude-filter plot  

(b) Amplitude-frequency plot. .......................................................................166 
. 166 
Figure 152 Performance of the signal processing detecting P4-coded signals. ...............167 
Figure 153 Costas code, sequence 1, time in frequency 10 ms, signal only PSD............169 
Figure 154 Costas code, sequence 1, time in frequency 10 ms, signal only Output of 

the parallel filter arrays. .................................................................................170 
Figure 155 Costas code, sequence 1, time in frequency 10 ms, signal only (a) Output 

after HOS (b) Zoom in plot after HOS showing parameters. ........................171 
Figure 156 Costas code, sequence 1, time in frequency 10 ms, signal only amplitude-

frequency plot ................................................................................................172 
Figure 157 Costas code, sequence 1, time in frequency 10 ms, SNR=0 dB PSD............173 
Figure 158 Costas code, sequence 1, time in frequency 10 ms, SNR=0 dB Output of 

the parallel filter arrays. .................................................................................173 



 xvi

Figure 159 Costas code, sequence 1, time in frequency 10 ms, SNR=0 dB (a) Output 
after HOS   (b) Zoom in the resulting signal after HOS. ...............................174 

Figure 160 Costas code, sequence 1, time in frequency 10 ms, SNR=0 dB amplitude-
frequency plot. ...............................................................................................175 

Figure 161 Performance of the signal processing detecting Costas-coded signals. .........176 
Figure 162 FSK/PSK Costas, bits in code =5, cycle per bit =1, signal only PSD. ..........179 
Figure 163 FSK/PSK Costas, bits in code =5, cycle per bit =1, signal only output of 

the parallel filter arrays. .................................................................................180 
Figure 164 FSK/PSK Costas, bits in code =5, cycle per bit =1, signal only output after 

HOS................................................................................................................181 
Figure 165 FSK/PSK Costas, bits in code =5, cycle per bit =1, signal only Zoom in 

the previous figure showing the Costas sequence..........................................181 
Figure 166 FSK/PSK Costas, bits in code =5, cycle per bit =1, signal only Zoom in 

the previous figure showing parameters. .......................................................182 
Figure 167 FSK/PSK Costas, bits in code =5, cycle per bit =1, signal only amplitude-

frequency plot of the resulting signal.............................................................182 
Figure 168 FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB PSD. ..........183 
Figure 169 FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB Output of 

the parallel filter bank. ...................................................................................184 
Figure 170 FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB output after 

HOS................................................................................................................185 
Figure 171 FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB zoom in the 

previous plot after HOS. ................................................................................185 
Figure 172 FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB zoom in 

previous plot showing parameters. ................................................................186 
Figure 173 FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB Amplitude-

frequency plot after HOS. ..............................................................................186 
Figure 174 Performance of the signal processing detecting Costas-coded signals. .........187 
Figure 175 FSK/PSK Target, phases =128, cycle per phase =5, signal only PSD. .........189 
Figure 176 FSK/PSK Target, phases =128, cycle per phase =5, signal only,  number 

of occurrences. ...............................................................................................190 
Figure 177 FSK/PSK Target, phases =128, cycle per phase =5, signal only Output of 

the parallel filter arrays. .................................................................................191 
Figure 178 FSK/PSK Target, phases =128, cycle per phase =5, signal only output 

after HOS. ......................................................................................................191 
Figure 179 FSK/PSK Target, phases =128, cycle per phase =5, signal only amplitude-

frequency plot after HOS. ..............................................................................192 
Figure 180 FSK/PSK Target, phases =128, cycle per phase =5, SNR=0 dB...................193 
Figure 181 FSK/PSK Target, phases =128, cycle per phase =5, SNR=0 dB output of 

the parallel filter arrays. .................................................................................194 
Figure 182 FSK/PSK Target, phases =128, cycle per phase =5, SNR=0 dB output of 

HOS................................................................................................................195 
Figure 183 FSK/PSK Target, phases =128, cycle per phase =5, SNR=0 dB amplitude-

frequency plot. ...............................................................................................195 
Figure 184 Performance of the signal processing detecting FSK/PSK target signals......196 



 xvii

Figure 185 Frank-coded signal: Resulting plot after HOS and phase shift......................198 
Figure 186 P1-coded signal: Resulting plot after HOS and phase shift. ..........................199 
Figure 187 P2-coded signal: Resulting plot after HOS and phase shift. ..........................200 
Figure 188 P3-coded signal: Resulting plot after HOS and phase shift. ..........................201 
Figure 189 P4-coded signal: Resulting plot after HOS and phase shift. ..........................202 

 
 
 
 
 



 xviii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xix

LIST OF TABLES 
 
 
 

Table 1 LPI radar systems (from [1])..............................................................................2 
Table 2 Definition of LPI radar (from [1]). ....................................................................2 
Table 3 Barker Code for 7, 11 and 13 bits. ...................................................................14 
Table 4 BPSK parameters. ............................................................................................67 
Table 5 FMCW parameters...........................................................................................69 
Table 6 P4 parameters...................................................................................................71 
Table 7 Costas code parameters....................................................................................73 
Table 8 Characteristics of software and hardware used in the simulation....................81 
Table 9 FMCW parameters...........................................................................................83 
Table 10 P4 parameters...................................................................................................86 
Table 11 Test signals.......................................................................................................90 
Table 12 Test Signal with one carrier. ............................................................................91 
Table 13 Test Signal with two carrier frequencies. ........................................................94 
Table 14 Matrix of input signals for BPSK. ...................................................................97 
Table 15 BPSK, 7-bit Barker code, 5 cycles per phase and signal only.........................98 
Table 16 BPSK, 7-bit Barker code, 5 cycles per phase and SNR=0 dB.......................102 
Table 17 Matrix of input signals for FMCW. ...............................................................107 
Table 18 FMCW ∆F=500 Hz tm=20 ms signal only. ....................................................108 
Table 19 FMCW ∆F=500 Hz tm=20 ms SNR= 0 dB. ...................................................111 
Table 20 Matrix of input signals for Frank Polyphase Code. .......................................115 
Table 21 Frank Code N=16 cycles per phase =5 signal only. ......................................116 
Table 22 Frank Code N=16 cycles per phase =5 SNR=0 dB. ......................................121 
Table 23 Matrix of input signals for P1. .......................................................................127 
Table 24 P1 Code N =64 cycles per phase =5 signal only...........................................128 
Table 25 P1 Code N=64 cycles per phase =5 SNR=0 dB.............................................132 
Table 26 Matrix of test signals for P2 polyphase code. ................................................137 
Table 27 P2 Code N=16 cycles per phase =5 signal only.............................................138 
Table 28 P2 Code N=16 cycles per phase =5 SNR= 0 dB............................................142 
Table 29 Matrix of test signals for P3 Polyphase code.................................................148 
Table 30 P3 Code N=64 cycles per phase =1 signal only.............................................149 
Table 31 P3 Code N=64 cycles per phase =1 SNR=0 dB.............................................153 
Table 32 Matrix of test signals for P4 Polyphase code.................................................158 
Table 33 P4 Code N=64 cycles per phase =5 signal only.............................................159 
Table 34 P4 Code N=64 cycles per phase =5 SNR=0 dB.............................................163 
Table 35 Matrix of test signals for Costas code............................................................168 
Table 36 Costas code, sequence 1, time in frequency 10 ms, signal only. ...................169 
Table 37 Costas code, sequence 1, time in frequency 10 ms, SNR=0 dB. ...................172 
Table 38 Matrix of test signals for FSK/PSK Costas code. ..........................................177 
Table 39 FSK/PSK costas, bits in code =5, cycle per bit =1, signal only.....................178 
Table 40 FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB....................183 
Table 41 Test signal matrix for  FSK/PSK Target........................................................188 



 xx

Table 42 FSK/PSK Target, phases =128, cycle per phase =5, signal only...................189 
Table 43 FSK/PSK Target, phases =128, cycle per phase =5, SNR=0 dB...................193 
Table 44 Different Polyphase-coded signals and differences for N=16. ......................197 

 
 



 xxi

ACKNOWLEDGMENTS 

 
 
 

I want to thank Professor Phillip E. Pace for his guidance and support during this 

research effort. His knowledge and experience helped me overcome numerous obstacles 

and made this thesis a very rewarding experience. 

I address special thanks to the Venezuelan Army, particularly to those people who 

made this course possible and have always been the military model to follow, General 

Guaicaipuro Lameda Montero and General Oswaldo Contreras Maza. 

 To my wife Renata and my son Andres, for all their love, support and 

understanding throughout our time in Monterey. You are the most important motivation 

in my life. 

To all of You who have influenced my life and now can fell proud of me on earth 

or heaven: my mother Rosalba, my father Enrique, my brother Enrique and my three 

grandmothers Maruquita, Magda and Rosalba.   



 xxii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xxiii

EXECUTIVE SUMMARY 
 

In the past, many types of radar were designed to transmit short duration pulses 

having relatively high peak power, to reduce all the propagation losses of the 

electromagnetic waves and, at the same time, to guarantee a straightforward recovery of 

the reflected wave from the target in clutter. Later, for military applications, it became 

important to handle problems like chaff and jamming that decreased the capability of 

those initial radars limiting their use on the battlefield. 

Today, radar designers are considering new waveforms that can provide the same 

capability of target detection but which are more difficult to be detected or intercepted; in 

other words, a Low Probability of Intercept (LPI) radar tries to provide detection of 

targets at longer ranges than intercept receivers can accomplish detection of the radar. 

The term LPI provides a collection of properties offering covertness to the radar signal 

making detection difficult with conventional receivers.  

From the interceptor’s point of view, the current and future use of LPI technology 

will encourage new approaches for the detection and interception of this type of radar 

signal. This thesis first develops a MATLAB® toolbox to generate important types of LPI 

waveforms based on frequency and phase modulation. The power spectral density and the 

periodic ambiguity function are examined for each waveform. Furthermore, this thesis 

documents an approach based on the use of parallel filter arrays and higher order 

statistics for the detection of most of the modulations employed today for radar 

applications. Additionally, this thesis provides a simple approach for the extraction of 

some of the parameters needed to identify and classify these signals. 

Examined LPI waveforms include Frequency Modulation Continuous Wave 

(FMCW), several polyphase-coded CW waveforms such as Frank, P1, P2, P3 and P4, 

frequency hopping, and combined frequency hopping-phase coding. As pointed out in 

this text, this technique alone is not sufficient to process the multiplicity of available LPI 

waveforms, but the combined use of this technique with others, such as Wigner 

distribution, Cyclostationary processing, and Quadrature mirror filtering will provide the 

expected response.    



 xxiv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 



1 

I. INTRODUCTION 

A. OVERVIEW OF LPI RADAR SIGNALS 

1. Low Probability of Intercept Radar Signals   
 In the past, many military types of radar were characterized by short duration pulses 

having relatively high peak power, with Radar Warning Receivers (RWR) and Electronic 

Support (ES) receivers being designed to detect those radars. Now, radar designers have 

considered new waveforms which are more difficult to intercept protecting them against 

Anti-Radiation Missiles (ARM) and reducing the detection range of RWRs and ES 

equipment. Today, many military users of radar are specifying Low Probability of Intercept 

(LPI) as an important technical and tactical requirement.  

The LPI technique is based on the property of an emitter that due to its low power, 

wide bandwidth, frequency variability and other attributes makes radar difficult to intercept 

or identify by conventional passive intercept receiver devices. A LPI radar works to detect 

targets at a longer range than an intercept receiver. This concept is well-summarized in a 

statement “It tries to see and not be seen.” This is a response to the increasing capability of 

modern intercept receivers to detect and locate radar emitters, possibly leading rapidly to an 

electronic attack or the physical destruction of the radar by guided munitions or Anti-

Radiation Missiles.  

The proliferation of radar, altimeters, tactical airborne targeting, surveillance and 

navigation devices employing LPI capabilities has demonstrated that power spectral analysis 

is useless when intercepting these signals; therefore, a more sophisticated signal processing 

must extract the necessary parameters of the waveform to create a proper electronic response. 

Table 1  shows some of the LPI systems currently in use as well as their developers and the 

waveform they employ (if known).   Table 2  presents various definitions frequently used in 

LPI systems. 

 

 

 



2 

 

Developer System Technique used LPI Use 
Honeywell HG9550 Frequency agility Radar Altimeter 
Navair GRA-2000 - Tri-service radar altimeter 
NavCom Defense 
Electronics AN/APN-232 FMCW Combined Altitude Radar 

Thompson CSF AHV-2100 - Radar Altimeter 
BAE AD1990 Frequency hopping Radar altimeter 
Saab Bofors Pilot Mk 1,2,3 Fast frequency hopping Surveillance, navigation 
Signaal’s Scout FMCW Surveillance, navigation 

Textron Systems AN/SPN-46  Precision approach, 
landing 

Signaal’s Smart-L - Surveillance 

TI AN/APS-147 Frequency agility Enhanced search, target 
designation 

Sierra Nevada TALS - Tactical automatic landing 
system 

Ericsson Eagle - Fire control 

Northrop Grumman AN/APG-77 Frequency agility Multi-mode tactical radar 
for F-22 

Raytheon AN/APG-70 Frequency agility Multi-mode tactical radar 
for F-15E 

TI  LANTIRN - Terrain following radar F-
16C/D, F-15E, F-14 

Raytheon AN/APG-181 - Multi-mode radar for B-2 

Chinese JY-17A - Battlefield surveillance 
radar 

Raytheon MRSR - Target acquisition and 
tracking 

Saab Dynamics RBS-15MR - Radar guided air-to-
surface missile 

 
Table 1   LPI radar systems (from [1]). 

 

 

Terms Definition 
Coherent Radar Transmitted signal has a constant phase relationship to an oscillator 

in the transmitter 
Frequency-Agile Radar Pulse or group of pulses are transmitted at different frequencies 
LPI Radar A radar with parameters that make it difficult for an ES receiver to 

correctly identify the radar type 
Quiet Radar A radar that detects a target at the same range that the target can 

detect the radar’s signal. 
Random-Signal Radar A radar which uses a waveform that is truly random (e.g., noise) 
Poly-Phase-Coded Continuous-
wave radar 

A radar that has a pseudo-random phase-coded modulation on a 
transmitted continuous-wave signal 

 
Table 2   Definition of LPI radar (from [1]). 

 



3 

2. Characteristics of LPI Radar Signals 
A LPI radar design must focus on the ability to defeat all the external threats that can 

lead to a precise identification of the system. Therefore, the following systems must be 

carefully designed to achieve the desired capability: 

• Security of the matched filter 

• Minimized signal PSD  

• Randomized radar parameters 

• Wideband operation 

• LPI antenna design  

• Power management 

 

To make the radar covert, the knowledge of a matched filter must be denied to unintended 

observers. This implies that the system requires a large selection of available waveforms with 

poly-phase coding supplying the necessary diversity. 

A LPI radar requires wideband signal modulations that reduce the signal’s 

detectability. Wideband modulations spread the signal’s energy in frequency, so that the 

frequency spectrum of the transmitted signal is wider than what is required to carry the 

signal’s information (Information bandwidth). Spreading the signal energy reduces the 

signal-strength-per-information bandwidth. Since the noise in a receiver is a function of its 

bandwidth, the SNR in any receiver attempting to receive and process the signal will be 

greatly reduced by the signal spreading. 

There are three ways in which modulation is used to spread the signal in frequency: 

• Periodically changing the frequency 

• Sweeping the signal frequency at a high rate, or chirping; and 

• Modulating the signal with a high rate digital signal, or direct sequence-
spectrum spreading. 

 

 

 

 



4 

Included in these categories are many wideband modulation techniques available to provide 

secure LPI waveforms: 

• Frequency Modulation 

• Linear FM (Chirp) 

• Non-Linear FM 

• Frequency Modulation Continuous Wave (FMCW) 

• Costas Array, frequency hopping 

• Phase modulation (bi-phase coding, polyphase coding) 

• Combined phase shift keying, frequency shift keying (PSK,FSK) 

• Pseudo-noise modulation 

• Polarization modulation 

 

Minimizing the radiated spectral density is another obtainable LPI requirement. If the 

code modulation is restricted to codes having two-level autocorrelation functions, the root-

mean-square (rms) side lobe values are likewise reduced.  

The most important antenna characteristic for reducing the possibility of an intercept 

receiver detecting the radio frequency (RF) emissions is a low-side-lobe-transmit pattern. 

Another antenna technique relates to the scan pattern, which must be precisely controlled to 

limit the intercept receiving time making it short and irregular. Antenna techniques can also 

achieve an LPI capability by using multiple simultaneous receive and transmit antenna beams 

to increase the target dwell time without compromising the target revisit time. Following the 

same criteria, a single wide beamwidth transmit antenna and many simultaneous receiving 

beams could also be employed. 

One important characteristic for LPI radar is the ability to manage the transmitted 

power (limiting its emission) in order to keep the target’s SNR constant. Using wideband 

continuous waves (CW) emissions, it is only necessary to transmit low energy to detect 

targets instead of tens of kilowatts required for pulse radar with similar performance, as 

shown in Figure 1 . 

 

 



5 

 

 

 

 

 

 

 

Figure 1  Comparison of a Pulsed Radar and a CW Radar ( from [1]). 
 

The high peak power transmitted by the pulsed radar can easily be detected by electronic 

support  (ES) receivers. On the contrary, CW signals have a peak-to-average power ratio of 

one (100% duty cycle) transmitting very low power while maintaining the same energy 

profile.  

The sensitivity factor is a crucial parameter that must be evaluated to succeed in the 

design of LPI radar. As shown in Figure 2 , sensitivity is a function of the bandwidth, noise 

figure and required SNR. The thermal noise is based on the formula KTB where T is the 

temperature in Kelvin, K is the Boltzmann’s constant and B represents the bandwidth.  The 

sensitivity in dBm is the sum of the thermal noise (in dBm), noise figure (in dB), and 

required signal-to-noise-ratio (in dB). If we set the value of the SNR to 13 dB, then KTB is 

usually taken as 

 

114 10log( ) KTB dBm B= − +  

where KTB is the thermal noise in dBm and B is the bandwidth on Hz. 

 

 

 

 

Time 

Pulse radar  
High peak power 
Small duty cycle 

CW radar 
Low continuous power 
100% duty cycle 

Power 
Same Energy in
both cases 



6 

 

 

 

 

 

 

 

Figure 2  Receiver Sensitivity (from [2]). 

 

 

Another useful factor to consider in the context of LPI radar signals is processing 

gain. Processing gain has the effect of narrowing the effective bandwidth of the radar 

receiver by taking advantage of some aspects of the signal modulation. The advantage comes 

because the radar receiver achieves a processing gain while the hostile intercept receiver 

cannot. An LPI radar achieves bandwidth advantage over an intercept receiver, because the 

radar has a matched filter to its own signal. In contrast, the intercept receiver must accept a 

wide range signals and must typically make detailed parametric measurements to identify the 

type of signal it is receiving. 

Coherent detection is an additional factor that help an LPI radar signal from being 

intercepted. Existing Electronic Warfare (EW) receivers cannot achieve coherent detection of 

a radar signal unless they know details of the signal. When the signal modulation is random, 

this property becomes even more effective. Using a true noise to modulate a radar signal is a 

good illustration of this characteristic. Radars using true noise modulation are called random-

signal radars (RSR). This kind of radar uses a technique to correlate the returning signal with 

a delayed sample of the transmitted signal. The amount of delay necessary to peak the 

correlation determines the range to the target. Since the transmitted signal is completely 

random, the intercepting receiver has no reference for correlating the received signal. 

Sensitivity 

Required SNR (dB) 

Receiver Noise Figure (dB) 

KTB 

Signal  
Strength 
 (dBm) 



7 

The use of frequency bands strategically located in the atmospheric absorption region 

creates difficulty for an intercepting receiver to detect the emissions. In Figure 3 , at least five 

different peaks are observable when covering the emission of LPI radar. This is an important 

constraint since radar depends exclusively on the energy placed on the target and the energy 

reflected from it. Based on this fact of physics, a LPI radar must radiate enough power to 

avoid a complete absorption of the signal but not enough to be detected by intercept 

receivers. Due to this limitation, this technique is only useful in radar with a short detection 

range.          

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  Regions of minimum and maximum atmospheric absorption for millimeter wave spectrum   
(from [3]). 

 

 

3.  LPI Intercept Receivers  
 Due to the nature of the new LPI threat, modern intercept receivers are becoming 

increasingly ineffective. Detection and interception of these LPI signals require sophisticated 

Wavelength \ (cm) 

3.0 1.0 0.5            0.3 0.1 
100 1 

02          | 

H20 {      H20 

10 

/  \       1    °2 

One-Way 
Absorption    1 -0 

(dB/km) 
- !     Elevation: 0.25 km 

'     Temperature: 293 K 
1    Water Vapor: 7.5 g/m3 

H20 

0.1 — 
[-"  22 DGHz 

35 GHz —»- 94 QHz —m-i -«— 140 GHz 

0.01 1 -             'l I 
1 0 30 60          100 300       4( )0 

Frequency (GHz) 

Figure 3.2    Regions of minimum and maximum atmospheric absorption in the MMW spectrum. Attenua- 
tion values are based on measured data [5,6]. 



8 

digital receivers, that use time frequency signal processing and correlation techniques to 

collect signal data, do the analysis and generate an electronic attack (jamming). 

Menahem Oren, general manager of ELISRA Electronic System (Bene Beraq, 
Israel), states, “LPI modulations cannot be properly processed with ‘snap 
shots’ of data. These signals will require the collection of continuous streams 
of data. All of the current signal can be collected and processed, but only with 
digital receivers can detect LPI signals.” [2] 

New solutions to the detection of LPI radar signals have revealed new challenges to 

overcome. These are some of the new problems that intercept receiver designers must face: 

• Differential Doppler provides an extremely accurate technique for emitter 
location. The measurements are based on the frequency shifts caused by the 
velocity of the aircraft making the measurements. This element causes 
considerable problem for airborne emitters. 

• Increasing the measurement fidelity means that more beams of data are produced. 
These require more computing speed and more memory. Managing processing 
speed is not a problem with the current digital capabilities but carrying enormous 
amounts of data is still a problem. 

• Increasing sensitivity of the receiver allows detecting sidelobes of the emitter but, 
at the same time, obligates the receiver to process a significantly large number of 
signals. 

In addition to these challenges, new signal-detection and feature-extraction systems are 

needed to effectively analyze these new waveforms in today’s complex signal environment. 

Developing new Electronic Attack (EA) techniques and evaluating the performance against 

LPI radar systems requires new theoretical approaches and a good deal of simulation and 

modeling. 

Time-frequency data analysis can be performed using complex instrumentation 

through computer analysis. Computer algorithms are currently being developed to analyze 

and graphically display the results of the data for user interpretation. Improvements are being 

considered to provide representations beyond the conventional use of the Fast Fourier 

Transform (FFT). The use of Higher Order Statistics (HOS) and parallel filter arrays along 

with the extraction of the most important features provide an accurate analysis and 

interpretation of unknown signals in real time. The documentation of this technique is the 

objective of the present work. 



9 

This thesis documents the use of parallel filter arrays and HOS as an effective 

technical approach for detecting and classifying LPI radar signals where the waveform of the 

signal is unknown. The HOS processing is one time-frequency approach to the detection of 

LPI signals (Figure 4 ). The objective of parallel filter arrays is to separate the input signal 

into small frequency bands, providing a complete time-frequency description of the unknown 

signal. Then, each sub-band signal is treated individually by a third-order estimator in order 

to suppress the noise and preserve the phase of the signal during the correlation process. 

Finally, the resulting matrix is entered into a feature extraction module whose resulting 

characteristics from the signal are used to determine what type of modulation was detected. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4  Overview of the parallel filtering and HOS.   

 

B.  PRINCIPAL CONTRIBUTIONS 

The objective of the research described in this thesis is to design a signal processing 

scheme capable of detecting and classifying LPI radar signals based on the combined use of 

parallel filter arrays and HOS.[2]  

Higher Order Statistics is a field of statistical signal processing which has become 

very popular in the last 15 years. This field makes use of information beyond that usually 

Filter Bank 

 Cumulant
 
 

Operator 

 Cumulant
 
 

 Operator 

Frequency
Time 
Plot 

 
CLASSIFIER Feature 

Extraction 
 

 
  Cosine 

Sine 

X = I + jQ 

 
LPI 

Signal 
Generator 

 
 
 
 
 
 
 

Envelope
 

Detector 

X(n) 
 
 
 
 
 
I 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q 

Z(n) 



10 

used in traditional signal-processing measures (such as the power spectrum and the 

correlation function). This additional information can be used to incur better estimates of 

parameters in noisy situations. 

 This research proves that the combined use of parallel filter arrays and HOS is an 

important tool, providing a complete time-frequency analysis of the unknown signal, while 

also suppressing Gaussian noise and extracting information due to deviations from 

Gaussianity. In addition, the analysis based on HOS preserves the true phase character of 

signals. As proven, this proposed method alone is not sufficient to process the multiplicity of 

available LPI waveforms; however, the combined use of this technique with others, such as 

Wigner distribution, Cyclostationary analysis or Quadrature filtering will provide the 

necessary signal processing for tomorrow’s LPI intercept receivers.  

 

C.  THESIS OUTLINE 

   Chapter II introduces the reader to the MATLAB®* toolbox for generating LPI 

signals. The lack of data from real radar signals motivated the design of a collection of 

mathematical models to generate signals with LPI properties, to be used later as inputs to the 

proposed detector and classifier. This generator by itself represents an important contribution 

for future research in this field.   

Chapter III presents the complete design of parallel filter arrays and the 

implementation of the higher order estimators. It thoroughly explains the design of a uniform 

filter bank and the implementation of HOS. 

Chapter IV illustrates the method used for feature extraction from the signals and the 

performance of the classifier based on the results. Results are shown and analyzed in detail 

along the parameters of the inputs signal for comparison.  
 

 

 

 

 

*MATLAB®  is a language that integrates mathematical computing and visualization to provide a flexible 
environment for technical computing. The open architecture makes it easy to use MATLAB®  and its products 
to explore data, create algorithms, and create customs tools that provide early insights and competitive 
advantages. 



11 

Chapter V summarizes the results of this thesis and also makes concluding remarks 

and recommendations. The chapters are followed by Appendix A and B containing the 

MATLAB® m-files used in the simulation and modeling of the LPI radar-intercept receiver 

study. 

In Chapter I, this document introduced the concept of LPI signals, showing their most 

significant characteristics, uses and the necessity for an innovative signal processing to 

overcome the new threat. Chapter II illustrates the most important modulations employed to 

obtain LPI characteristics, such as BPSK, FMCW and polyphase codes. The description of an 

LPI signal generator toolbox is presented as well as a tutorial to guide its use.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 

 
 



13 

II. LOW PROBABILITY OF INTERCEPT EMITTERS AND THEIR 
SPECTRAL PROPERTIES 

A.  BINARY PHASE SHIFT-KEYING  

Binary Phase Shift-Keying (BPSK) is modulation technique that has proven to be 

extremely effective in communication and radar systems. Even though BPSK is not a 

technique employed in LPI radar modulation, the technique is an excellent test signal in 

evaluating the performance of the proposed signal processing.  

In BPSK modulation, the phase of the frequency carrier is shifted 180 degrees in 

accordance with a digital bit stream. The digital coding scheme used in this implementation 

is called Non-Return-to-Zero (NRZ-M). A “one” causes a phase-transition, and a “zero” does 

not produce a transition. Figure 5  shows a basic block diagram of the transmitter design. The 

signal ( )x t  is a continuous wave (CW) sinusoid.  After sampling at the Nyquist rate, the 

modulated signal is created by adding a n-bit  Barker code. This code has been used widely 

because of its low-side lobes at zero Doppler. Once the signal has been modulated, white 

Gaussian noise is added with the desired Signal-to-Noise Ratio (SNR).  [4]  

 
Figure 5  BPSK implemetation block diagram. 

 



14 

 
Figure 6  (a) Sampled signal  and modulating signal in red  (b) modulated signal for a 13-bit Barker 

code BPSK signal. 

 

Figure 6 (a) shows the sampled signal and modulating signal and Figure 6 (b) 

presents the modulated signal for a 13-bit Barker code.  The dashed red lines in Figure 6 (a) 

represent the modulating signal waveform.  The number of periods of the carrier frequency 

per Barker Bit is equal to one, meaning that one full period of the sampled signal fits within 

one bit of the 13-bit Barker code.  The first five bits of the Barker code are +1 and the next 2 

bits are -1, so we see five full periods under the first +1 portion of the modulating waveform, 

2 full periods under the -1 portion of the modulating waveform, and so forth.  In this figure, a 

complete 13-bit Barker code is represented.  Table 3  shows the Barker code sequence for 7, 

11 and 13 bits. 

Number of bits Barker Code

7 + + + - - + -

11 + + + - - - + - - + -

13 + + + + + - - + + - + - +
 

Table 3   Barker Code for 7, 11 and 13 bits. 

(a)

 
 

(b)



15 

Figure 7 illustrates the Power Spectral Density (PSD) of a 13-bit BPSK signal with 

carrier frequency equal to 1000 Hz, sampling frequency equal to 7000 Hz and 1 cycle per bit. 

Figure 8 shows the sampled signal in the time domain modulated by a 13-bit Barker code 

(a)without noise  and (b) with SNR = 0 dB.  

 
Figure 7  PSD of a BPSK signal modulated with 13-bit Barker code. 

 
Figure 8  Sampled 13-bit BPSK signal (a) without noise and (b) with SNR = 0 dB.  

 

(a) 

(b) 



16 

Figure 10(a) shows the contour plot of the Periodic Ambiguity Function (PAF) of the 

13-bit Barker CW signal [5] . This plot describes the response of the correlation receiver to 

the signal modulated by the 13-bit Barker code. The response is a function of both the delay 

and Doppler.  Figure 10(b) presents the cut along the 0 Doppler axis corresponding to the 

perfect periodic autocorrelation. For a Barker code, the sidelobes peak level can be obtain by 

1/N where N is the number of bits processed. Figure 10(b) shows the cut along the 0 delay 

axis. 

 
(a) 

 
(b) (c) 

 
Figure 9  (a) Contour plot of the PAF for a BPSK signal modulated with 13-bit Barker code. (b) Cut 

along the 0 Doppler and (c) 0 delay axis.   

 



17 

B.  FREQUENCY MODULATED CONTINUOUS WAVE 

Linear frequency modulation is a LPI radar technique and is readily compatible with 

solid-state transmitters. The most popular modulation is the triangular modulation of a 

Frequency Modulated Continuous Wave (FMCW). The linear FMCW emitter uses a 

continuous 100 % duty-cycle waveform so that both the target range and the Doppler 

information can be measured unambiguously while maintaining a low probability of intercept 

[1]. The FMCW waveform shows excellent characteristics for the best use of the output 

power available from solid-state devices. This waveform is easier to implement than phase 

code modulation as long as there is not a strict demand on the linearity over the modulation 

bandwidth. 

The triangular modulation consists of two linear frequency modulation sections with 

positive and negative slopes. With this configuration, the range and Doppler frequency of the 

detected target can be extracted unambiguously by taking the sum and the difference of the 

two beat frequencies. These characteristics are shown in Figure 10 . [1]  

 

 

 

 

 

 

 

         

 

 

 

Figure 10  Linear frequency modulated triangular waveform and the Doppler shifted return signal. 

 

 

 
2

d
Vf
λ

=  f 

Doppler shifted receiver signal 

Transmitted signal 

 

1b d d
m

Ff f t
t
∆

= + 

2b d d
m

Ff f t
t
∆

= −  

t 

←tm→



18 

The frequency of the transmitted signal for the first section is  

 1 0( )
2 m

F Ff t f t
t

∆ ∆
= − +  (2.1.1) 

for 0 < t < tm and zero elsewhere. Here of  is the RF carrier, F∆ is the transmitted 

modulation bandwidth, and  mt  is the modulation period.  

The phase of the transmitted RF signal is 

 1 1
0

( ) 2 ( )
t

t f x dxφ π= ∫  (2.1.2) 

Assuming that 0oφ = at t=0 then 

2
1( ) 2

2 2o
m

F Ft f t t
t

φ π
 ∆ ∆ = − +  
  

 

for 0 < t < tm.  The transmit signal is given by 

 

 2
1( ) sin 2

2 2o o
m

F Fs t a f t t
t

π
 ∆ ∆ = − +  
  

 (2.1.3) 

 

The frequency of the transmitted waveform of the second section is 

 

   2 0( )
2 m

F Ff t f t
t

∆ ∆
= + −  

for 0 < t < tm. The transmitted base band signal is given by 

 2
2 ( ) sin 2

2 2o o
m

F Fs t a f t t
t

π
 ∆ ∆ = + −  
  

 (2.1.4) 

 

 



19 

Figure 11 illustrates the triangular modulation signal for a FMCW signal with a modulation 

bandwidth of 250 Hz, modulation period of 50 ms and carrier frequency of 1000 Hz.  

 
Figure 11  Triangular modulating signal for a FMCW. 

 

Figure 13 shows the PSD of the triangular  FMCW signal described above. Only the carrier 

frequency and modulation bandwidth are easily identified. 

 
Figure 12  PSD of the FMCW signal described in Figure 11. 

 



20 

Figure 13 (a) illustrates the PAF of the signal. Additionally, Figure 13 (b) and (c) provides 

the cuts along the 0 Doppler axis and 0 delay axis. 

 

 

(a) 

 

(b)                                                                               (c) 

 

Figure 13  FMCW signal (a) PAF,  (b) Cut along 0 Doppler and (c) Cut along 0 delay.  

 



21 

 

C. FRANK CODE 
The Frank code belongs to the family of polyphase codes. This code has been 

successfully used in implementing LPI radar signals. A Frank-coded waveform consists of a 

constant amplitude signal whose carrier frequency is modulated by the phases of the Frank 

code.  

For each frequency or section of the step chirp, a phase group consisting of N phases 

samples is obtained and the total number of code phases is N2, which is equal to the pulse 

compression ratio.  If a local oscillator is at the start of the sweep of a step approximation to a 

linear frequency waveform, the first N samples of the polyphase code are 0 phase.  The phase 

increments within the four phase groups are 0º, 90º, 180º and 270º. However the phases at the 

last group are ambiguous (>180º) and appear as -90º phase steps, or as the conjugate of the 

first group of phases. 

The representation of a Frank-coded signal, where i is the number of samples and j is 

the number of frequency, the phase of the ith sample of the jth frequency is given by the 

following equation: 

 

 
,

2 ( 1)( 1)
i j

i j
N
πφ = − −  (2.1.5) 

 

where i=1, 2, …, N and j=1, 2, …, N. Each element of the Frank code is t seconds long, 

which is approximately equal to the reciprocal of the waveform 3 dB bandwidth. The phases 

of the Frank code may be generated for transmission by multiplying the elements of the 

matrix  

 



22 

 

2

0 0 0 ... 0
0 1 2 ... ( 1)
0 2 4 ... 2( 1)
. . . . .
. . . . .
. . . . .
0 ( 1) 2( 1) ... ( 1)

N
N

N N N

 
 − 
 −
 
 
 
 
 
 − − − 

 (2.1.6) 

 

by the phase 2 / Nπ  and by transmitting the phases of row 1 followed by row 2 etc. The 

gross shape of the spectrum of an ideally generated Frank-coded waveform is approximately 

given by 
sin( / )

( / )
f B

f B
π

π
where B  is 1/τ, centered on the carrier frequency. In radar applications, 

transmitters are operated in saturation; therefore, the abrupt phase transition can be made 

from one code element to the next. Figure 14 shows the phase shift of a Frank-coded signal 

for N2=16. The components of the matrix are plotted by rows.  

 

 
Figure 14  Phase shift in radians versus index in the matrix for N=4. 

 



23 

Figure 15 provides the PSD of the Frank-coded signal described above. One cycle per 

phase used in the generation of this signal. Some values can be identified in the plot, such as 

carrier frequency equal to 1000 Hz and bandwidth of 1000 Hz.. Figure 16 shows a time 

domain section of the signal.  

 

 

 
Figure 15  PSD for a Frank-coded signal with N=4. 

 

 



24 

 
Figure 16  Time domain plot for a Frank-coded signal with N=4. 

 

 

Figure 17 provides the contour plot of the PAF of the Frank-coded signal with N=4. 

Because N code groups, each having N code elements, add to form the match-point peak, the 

peak squared to peak sidelobe squared ratio will be  

 

2 2 2
2 2

22

( ) ( )
(  )

peak N N
peak sidelobes N

π

π

= =
 
 
 

   (2.1.7) 

 

for large N, the Frank polyphase code produces mean square sidelobes that are down on the 

order of  210 Nπ  from the match-point peak squared. The cuts along 0 Doppler and the 0 

delay axis are provided in Figure 18  for N=4.  

 

 



25 

 
Figure 17  Contour plot of the PAF for a Frank-coded signal with N=4  

 

 

 

 
Figure 18  Cuts along the 0 Doppler and 0 delay axis.   

 

 

 



26 

D. P1 CODE 

By changing the synchronous oscillator frequency, different phase codes can be 

generated with equal amplitudes but with different phases. By placing the synchronous 

oscillator at the center frequency of the step chirp IF waveform and by sampling the base 

band waveform at the Nyquist rate, the polyphase code called P1 may be obtained. The P1 

code and the Frank code consist of same number N2 elements. [6]  

If i is the number of the samples in a given frequency and j is the number of the 

frequency, the phase of the ith sample of the jth frequency is given by the equation: 

 

 
,

[ (2 1)][( 1) ( 1)]
i j

N j j N i
N
πφ −

= − − − + −  (2.1.8) 

 

where i = 1,2,…,N and j = 1,2,…,N The PAF for P1 code for N odd is identical to the Frank 

code. Figure 19 illustrates the phase shift of a P1-coded signal with N=8. 

 

 
Figure 19  Phase shift for a P1-coded signal with N=8. 

 

 



27 

The PSD for a P1-coded signal is shown in Figure 20. Carrier frequency of 1000 Hz, and 

bandwidth of 1000 Hz can be identified in this figure. Figure 21 present the time domain 

description of the signal where the changes in phase can be observed. Figure 22 presents the 

PAF for a P1-coded signal. Figure 23  shows the cuts along the 0 Doppler and the 0 delay. 

 

 
Figure 20  PSD for a P1-coded signal with N=8. 

 

 

 
Figure 21  Time domain plot of a P1-coded signal with N=8. 

 



28 

 

 
Figure 22  Contour plot of the Ambiguity Function for a P1-coded signal with N=8. 

 

 

 

 

 
 

Figure 23  Cuts along the 0 Doppler and 0 delay axis of the PAF for a P1-coded signal with N=8. 

 

 



29 

E.  P2 CODE 

This code is essentially derived in the same way as the P1 code is derived. The P2 

code has the same phase increments within each group as the P1 code, except that the starting 

phase is different.  The P2 code is valid for N even, and each group of the code is symmetric 

about 0 phase. These phases can be calculated by 

 
,

[( 1) / ] ( )( 1)] [ 1 2 ]
2i j

N N i N j
N

π πφ  = − − − + − 
 

 (2.1.9) 

or 

 [ ][ ]
,

2 1 2 1
2i j

j N i N
N
πφ −

= − − − −  (2.1.10) 

where i=1, 2, …, N and j= 1, 2, …, N. This code has the frequency symmetry of the P1 code 

while also containing the property of being a palindromic code since the phases are 

symmetric in the center of the code. [6]  

The P2 polyphase code, has more of a symmetrical frequency spectrum than a Frank-

coded signal due to its symmetry in the carrier. Figure 24 shows the phase shift of a P2-coded 

signal with N=8 (N2= 64 phases).   

 

 
Figure 24  Phase shift for a P2-coded signal with N=8. 

 



30 

Figure 25 shows the PSD of a P2-coded signal with carrier frequency equal to 1000 

Hz, 1 cycle per phase, bandwidth of 1000 Hz and N=8 (N2= 64 phases). Figure 26 presents a 

time domain representation of the signal where the phase shift can be observed. 

 
 
 

 
Figure 25  PSD for a P2 coded-signal with N=8. 

 

 

 
Figure 26  Time domain plot of a P2-coded signal with N=8. 



31 

  

The PAF of a P2-coded signal with N=8 is presented in Figure 27 . Additionally, 

Figure 28 shows the cuts along the 0 Doppler and the 0 delay axis. The PAF maximum side 

lobe levels of Frank, P1 and P2 are identical.  

 

 
Figure 27  Contour plot of the PAF for a P2-coded signal with N=8. 

 

  
Figure 28  Cuts along the 0 Doppler and 0 delay axis of the PAF for a P2-coded signal with N=8. 

 

 



32 

F. P3 CODE 

This code is derived by converting a linear-frequency modulation waveform to base 

band using a local oscillator on one end of the frequency sweep and sampling the I and Q 

video at the Nyquist rate. If it is assumed that the waveform has a pulse length T in frequency 

of f kt= + , where k is a constant, the bandwidth B of the signal will be approximately B=kT. 

[6]   

The bandwidth will support a compressed pulse length of about 1/ct B=  and the 

waveform will provide a pulse compression ratio of / cpc T t BT= = . Assuming that the 

first sample of I and Q are taken at the leading edge of the waveform, the phases of 

successive samples taking tc apart are 

 

( 1)

0 0
0

2 [( ) ]
ci t

i f kt f dtφ π
−

= + −∫     (2.1.11) 

or 

 2 2( 1)i ck i tφ π= −  (2.1.12) 

 

1if ,  1, 2,...,  and c
Bk i N t
T B

= = = , the equation can be written as 

 
2 2( 1) ( 1)

i
i i
BT N

π πφ − −
= =  (2.1.13) 

 

Figure 29 shows the phase shift of a P3-coded signal with N=64. 

 

 



33 

 
Figure 29  Phase shift for a P3-coded signal with N=64. 

 

 

Figure 30 illustrates the PSD of the signal with carrier frequency of 1 KHz, 1 cycle per phase 

and bandwidth of 1 KHz. Figure 31 shows a time domain plot of the signal. 

 

 

 
Figure 30  PSD for a P3-coded signal with N=64. 



34 

 

 
 

Figure 31  Time domain plot of a P3-coded signal with N=64. 

 

The PAF of a P3-coded signal is shown in Figure 32 . Figure 33 presents the cuts 

along the 0 Doppler and 0 delay axis. The PAF of a P3 code is similar to that for Frank and 

P1 except that the peak sidelobes are approximately 4 dB higher.  

 
 
 

 
 

Figure 32  Contour plot of the PAF for a P3-coded signal with N=64. 



35 

 

 

  
 

Figure 33  Cuts along the 0 Doppler and 0 delay axis of the PAF for a P3-coded signal. 

 

 

G. P4 CODE 
The P4 code is conceptually derived from the same waveform as the P3 code. 

However, in this case, the local oscillator frequency is set equal to / 2of kT+  in the I-Q 

detectors [6] . With this frequency, the phases of successive samples taking tc apart are  

   

( 1)

0 0
0

2 [( ) ]
2

ci t

i
kTf kt f dtφ π

−

= + − +∫        (2.1.14) 

or 

( 1)

0

2 ( / 2)
ci t

i k t T dtφ π
−

= −∫                                        (2.1.15) 

or 

2
2 2 ( 1)( 1) ( 1) ( 1)i c c

ik i t kT i t i
N

πφ π π π
 −

= − − − = − − 
 

.                    (2.1.16) 



36 

Figure 34 shows the relationship between the index in the matrix and its subsequent phase for 

a P4-coded signal with N= 64 (phases).   

 

 
Figure 34  Phase shift for a P4-coded signal with N=64 phases. 

 

 

 
Figure 35  PSD for a P4-coded signal with N=64. 

 



37 

 

 
Figure 36  Time domain plot of a P4-coded signal with N=64. 

 
 
 
 
 

 
 

Figure 37  Contour plot of the PAF for a P4-coded signal with N=64. 

 

 



38 

 
 
 
 

  
(a)        (b) 

 
Figure 38  P4-coded signal  PAF (a) Cuts along the 0 Doppler and (b) 0 delay axis.  

 

 

H.  COSTAS CODE 
In a frequency hopping system, the signal consists of one or more frequencies being 

chosen from a set ( )1 2, ,..., mf f f of available frequencies,  for transmission at each of a set  

( )1 2, ,..., nt t t of consecutive time intervals. For modeling purposes, it is reasonable to consider 

the situation in which m=n, and a different one of n equally spaced frequencies 

( )1 2, ,..., mf f f is transmitted during each of the n equal duration time intervals ( )1 2, ,..., nt t t . 

Such a signal is represented by a n x n permutation matrix A, where the n rows correspond to 

the n frequencies, the n columns correspond to the n intervals, and the entry ,i ja  equals 1 

means transmission and 0 otherwise[7] . This signifies that, at any given time, a tone 

frequency is transmitted, and each frequency only once as shown in Figure 39(a). Other 

possible frequency-hopping sequences belong to this family. This hopping order stongly 

affects the ambiguity function of these signals. Costas frequency-hopping signals allow a 

simple procedure that results in a rough approximation of their ambiguity function. 
 



39 

 

 

 

 

 

(a)      (b) 

Figure 39  Binary matrix representation of (a) quantized linear FM and (b) Costas Signal 

 

 

This is possible because the cross correlation signals at different frequencies approach zero 

when the frequence difference is large relative to the inverse of the signal duration. The PAF, 

at any given coordinates, is an integral of the product between the original signal and a 

replica of it, which is shifted in time and frequency according to the delay and the Doppler 

coordinates of the function. 

From the results of the difference matrix in Figure 39(b) except for the zero-shift 

cases, when the number of coincidences is N, finding a combination of shifts yielding more 

than one coincidence is not possible. This is actually the criteria of Costas sequences, where 

sequences of frequency-hopping yield no more than one coincidence.  For example if 

{ } 2,6,3,8,7,5,1 ja = is a Costas matrix, then its coding matrix and difference matrix are 

shown  in Figure 40 . 

 

0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
1 
0 

0 
0 
0 
1 
0 
0 

0 
0 
1 
0 
0 
0 

0 
1
0 
0 
0 
0 

1
0 
0 
0 
0 
0 

0 
0 
0 
0 
1
0 

0 
1
0 
0 
0 
0 

0 
0 
0 
0 
0 
1

1 
0 
0 
0 
0 
0 

0 
0 
1 
0 
0 
0 

0 
0 
0 
1 
0 
0 

Time Time

Frequency Frequency 



40 

 

 

Figure 40  (a) The coding matrix (b) difference matrix and (c) ambiguity sidelobe matrix of a Costas 
signal. 
 

Figure 41 illustrates the PSD of the Costas-coded signal. Seven frequencies are observed in the power 

distribution of the signal along the frequencies. Figure 42 shows a portion of the time domain 

representation of the coded signal. 



41 

 
Figure 41  PSD for a Costas signal.  

 

 
Figure 42  Time domain plot of a Costas-coded signal. 

 

 



42 

Figure 43 through Figure 46 present the PAF for a Costas-coded signal where the distribution 

of the sidelobes can be compared with the sidelobes matrix in Figure 40 . 

 
Figure 43  3-D PAF for a Costas-coded signal with sequence 2-6-3-8-7-5-1. 

 
 
 

 
 

Figure 44  Contour plot of the PAF for the Costas-coded signal with sequence 2-6-3-8-7-5-1.  



43 

 
Figure 45  Cut along the 0 Doppler axis. 

 
Figure 46  Cut along the 0 delay axis. 

 

 

 



44 

I. PHASE SHIFT KEYING/FREQUENCY SHIFT KEYING. 

This modulation technique is the result of a combination of frequency shift keying 

based on a Costas frequency hopping matrix and phase shift keying using Barker sequences 

of different lengths. In a Costas frequency-hopped signal, the firing order of the NF  

frequencies each with sub-period TF defines what frequencies will appear and with what 

duration. During each sub-period, as the signal stays in one of the frequencies, a binary phase 

modulation occurs according to a Barker sequence of length NP = 5, 7, 11 or 13. The final 

waveform may be seen as a binary phase shift modulation within each frequency hop.[8]   

As illustrated in Figure 1, if we consider NF frequency hops and NP as the number of 

phase slots of duration TP in each sub-period TF, the total number of phase slots in the 

FSK/PSK waveform is given by [16]  

 

F PN N N=      (2.1.17) 

 

The block diagram in Figure 47 (a), describes the MATLAB® implementation. The 

user defines which sequence of Costas frequency hops he wants to use and also how long the 

Barker sequence is (5, 7, 11 or 13). The number of frequency hops is pre-defined to be seven 

and the user may select from seven different options of sequences of frequencies varying 

from 1 KHz to 11 KHz. The Barker sequence is generated and the frequency hopping signal 

is then modulated accordingly. 

 

 

 

 



45 

 
Figure 47  FSK/PSK (a) block diagram, (b) General FSK/PSK signal containing NF frequency hops with 

NP phase slots per frequency. (from [8] ). 

 

 

Figure 48 shows the Costas frequency-hopping waveform PSD before it is phase 

modulated. Figure 49 presents the PSD for a FSK/PSK Costas-coded signal after phase 

modulation. The  PSD plots reveal the spread spectrum characteristic of these signals. The 

Costas sequence is always seven frequency hops (4, 7, 1, 6, 5, 2, and 3 KHz). The sampling 

frequency is 15 KHz, satisfying the Nyquist minimum rate ( 2s cf f>> ) for the biggest 

frequency value. All plots are generated in MATLAB® using the routines fsk_psk_costas.m 

and PAF_FSK_PSK.m, both listed in Appendix A. 

 



46 

 
Figure 48  PSD for a Costas-coded signal. 

 

 
Figure 49  PSD of a FSK/PSK Costas-coded signal. 

 

  



47 

J. FSK/PSK COMBINED WITH TARGET-MATCHED FREQUENCY 
HOPPING   

 

Instead of spreading the energy of the signal equally over a broad bandwidth, the 

target matched frequency hopping technique concentrates the signal energy in specific 

spectral locations that are important for the radar target detection capability within its broad-

spectrum bandwidth. The transmitted signals have a pulse compression characteristic and 

therefore they can achieve low probability of intercept.  

Figure 50 illustrates the block diagram for the generation of FSK/PSK in addition, 

Figure 51 shows the FSK/PSK target simulated response and the probability distribution and 

frequency firing order with the number of occurrences per frequency. The implementation 

starts with a simulated target time radar response. This data is then Fourier transformed and 

the correspondent NF frequencies and initial phases are collected. A random selection process 

chooses each frequency with a probability distribution function defined by the spectral 

characteristics of the target of interest (obtained from the FFT). The frequencies with the 

highest spectral peaks (largest magnitudes) are transmitted more often. Each ‘frequency hop,’ 

transmitted is also modulated in phase, having its initial phase value modified by a pseudo-

random phase sequence of values equally likely to be zero or π  radians. [8]  

The matched FSK/PSK radar will then use a correlation receiver with a phase 

mismatched reference signal instead of a perfectly phase matched reference. This allows the 

radar to generate signals that can match a target’s spectral response in both magnitude and 

phase.  

 

 

 

 

 

 

 



48 

 

 

 

 

 

 

 

Figure 50  Block diagram of the implementation of the FSK/PSK Target matched waveform. 

 

 

 

 

 

 



49 

 

 

 
(a)  

 
(b) 

 

Figure 51  (a) FSK/PSK target 64 frequency components and frequency probability distribution (b) 
FSK/PSK target 64 frequency components histogram with number of occurrences per 
frequency for 256 frequency hops 



50 

K. LOW PROBABILTY OF INTERCEPT SIGNAL GENERATOR 

A signal generator toolbox was developed due to the necessity of creating the input 

signals with LPI characteristics. The purpose of the LPI signal generator toolbox is to 

generate a variety of LPI signals and evaluate their time-domain and frequency-domain 

characteristics. This toolbox by itself is an important contribution for future research in this 

area. The program, implemented in MATLAB® 6.1, can generate the following LPI signals 

and test signals: 

1. Binary Phase Shift Keying (BPSK) 

2. Frequency Modulated Continuous Wave (FMCW) 

3. Frank-coded signals 

4. P1  

5. P2  

6. P3 

7. P4 

8. Costas-coded signal 

9. Frequency Shift-Keying/Phase Shift-Keying (FSK/PSK) Costas 

10. Frequency Shift-Keying/Phase Shift-Keying (FSK/PSK) Target 

11. Test signal – single tone and two tones 

The block diagram of the LPI signal generator is shown in Figure 53. The total LPI 

generator toolbox consists of one main program and eleven (11) sub-programs with 

important general features, such as the capacity to add white Gaussian noise. The noise is 

added to the signal by specifying a desired SNR as  

2

22
ASNR
σ

=      (2.1.18) 

 where A is the amplitude and 2σ  is the WGN. The idea of developing modular programs can 

facilitate the inclusion of new modulations without complex changes in the rest of the sub-

programs. The MATLAB® code is presented in Appendix A. 

 

 



51 

 

 

 

 

 
Figure 52  Block diagram of the LPI signal Generator. 

 

 

 

 

 



52 

 

1. LPI Signal Generator – Main Program 
 This program begins by creating a main menu (Figure 53 ) and includes all the 

available signals, so the user can generate signals continuously without opening each sub-

program separately. Because of the modular design, the user can use each sub-program 

individually if desired. The name of the program is LPIG.m, which can be found in 

Appendix A.  

 

 

 
Figure 53  LPI signal generator main menu.  

 

 

 
 
 

) MATLAB -ini x| 
File   Ed*   View    Web   Window   Help 

D   C£ L-  ft  ^   ^   I   K I    ?   I Current Directory; | d:*LPl J 

» ** 
***** 

******************************* 
PROGRAM TO  GENERATE  LPI  SIGNALS******* 

******************************** 

CHOOSE  A TYPE   OF  CODE TO BE  GENERATED: 
1. BPSKJ 
2. FMCW 
3. FRANK CODE 
4. POLYPHASE   CODE  PI 
5. POLYPHASE   CODE   P2 
6. POLYPHASE   CODE  P3 
7. POLYPHASE   CODE  P4 
8. COSTAS  CODE 
9. FSK/PSK  COSTAS 
10. FSK/PSK TARGET 
11. TEST SIGNAL 

Enter a nimber   (1-11): 

A * 
Ready 



53 

 
2. BPSK 

The objective of this sub-program is to generate test signals with Binary Phase 

Shift-Keying determined by n-bit Barker code. This program, identified as bpsk.m, 

can be run from LPIG.m (main menu) or directly. The execution of the program 

guides the user to the BPSK sub-menu, where the following parameters can be 

adjusted (Figure 54 ): 

Amplitude of the carrier signal 
Carrier frequency (Hertz) 
Sampling frequency (Hertz) 
Signal to noise ratio (dB) 
Number of bits per Barker code (7,11 or 13-bit) 
Number of code periods. The code will be generated as often as requested. 
Number of cycles per bit.  Number of cycles of the carrier frequency for each bit of 

the Barker sequence. 
Number of code periods to view on graph. 
 

 

 
Figure 54  BPSK menu. 

 

MATLAB 

File   Edit    View   Web   Window   Help 

- D  x 

Current Directory: CKLPI G 3_J 
» ************************************ 
**************** BPSK ***************** 
*************************************** 

WHICH PARAMETER DO YOU WANT TQ  SET  ? 

1. Amplitude of the carrier signal -   (A)= 1. 
2. Carrier  frequency -  f   (Hz)   = 1000. 
3. Sampling frequency - fs   (Hz)= 7000. 
4. Signal to noise ratio - SNRdb   (dB)= 0. 
5. Number of bits per Barker code - barker   (13/11/7)= 7. 
6. Number of code periods- np= 175. 
7. Number of cycles per Barker bit - NPBB= 5. 
8. Number of code periods to view on graphs= 55. 
9. No changes 

Select a option: 

Ready 
JJLT 



54 

The BPSK signal generator produces different plots to show the main characteristics, 

facilitating understanding and analysis of the resulting signals. The results include the PSD of 

the Barker sequence, PSD of the modulated signal and time domain representation.  

The output of the signal generator is saved with an automatically-generated name. 

The file contains the In-Phase and Quadrature components of the signal. In addition, the 

program provides the directory path where the signal was saved (the same directory as he 

program files). 

 

 
Figure 55  BPSK Signal Generator screen shot. 

 

 

 

 

 

 

 

 

.1 MATLAB 

File   Edit   View   Web   Window   Help 

Dci-^1lfe,orai¥      *?     Current Directory: ttiLPI Genei 

JöJxJ 

Do you want to generate plots of the signal   (Y/y or N/n)   ?y 

Do you want to save the new signal   (Y/y or N/n)   ?y 

Signal and noise save as 
Signal only save as  : 
Directory: 
» 

_1_7_7_5_0 
B_l_7_7_5_s 

d:\LPI  Generator 

Ready 
1L 



55 

3. FMCW 

The objective of this sub-program is to generate triangular FMCW signals. 

This program, named fmcw.m, can be run from LPIG.m (main menu) or run directly. 

The execution of the program guides the user to the FMCW sub-menu, where some 

parameters that can be adjusted as shown in Figure 56 : 

1. Amplitude of the carrier signal 
2. Carrier frequency (Hertz) 
3. Sampling frequency (Hertz) 
4. Signal to noise ratio (dB) 
5. Modulation bandwidth (Hertz) 
6. Modulation period (seconds) 
7. Number of triangles to be generated. 

 

 

 
Figure 56  FMCW sub- menu. 

 

 

 

 

ft*************««««»»»««**««««»»«»««««!!***** 
ft*************««*»«     FJfCW     ******************** 
»A*******««««««««« ****»»»»«********** 

WHICH   PARAMETER  DO  YOU WANT TO   SET   ? 

1. Amplitud of  the carrier  signal  - A«  1. 
2. Cannier   frequency -  fO   (Hz)=  1000. 
3. Sampling frequency -  ts   (Hz)«7000. 
4. Signal  to noise  ratio -  SHR_dB   (dB)«  0. 
5. Modulation bandwidth -  deltaF  (Hz)=  250. 
6. Modulation period -  tu   (sec)=  0.05. 
7. Number of  triangles  -  tnangles = 5. 
8. No changes 

Select a option: 

Ready 
lL 



56 

The output of the signal generator can be saved with an automatically-generated name. The 

file contains the In-Phase and Quadrature components of the signal. In addition, the program 

provides the directory where the signal was saved as shown in Figure 58. 

 

 
 

Figure 57  FMCW Signal generator screen shot. 

 

 

4. Polyphase-coded signals: Frank code, P1, P2, P3 and P4 
 The objective of these programs is to generate LPI signals using polyphase 

coding. These programs named frank.m, p1.m, p2.m, p3.m and p4.m can be run 

from LPIG.m (main menu) or run directly. The execution of these programs leads the 

user to the corresponding sub-menus, where many parameters can be adjusted: (see 

Figure 58 ) 

8. Amplitude of the carrier signal. 
9. Carrier frequency (Hertz) 
10. Sampling frequency (Hertz) 
11. Signal to noise ratio (dB) 
12. Number of phase codes 
13. Number of cycles per phase. 
 

 

 

-) MATLAB 

File    £dit    View    Wefe    Window    tielp 

D   & | §   f£>   »O   r*   I   D|       7   I Current Directory: £J 

Do you want to  generate plots  of  the  signal   (Y/y or  I 

Do you want to  save  the new signal   (Y/y or  H/n)   ?y 

Signal   and noise  save  as   : F_l_7_250_0 
Signal   only save  as   : ^L1.7-250-3 

Directory: d:\LPI  Generator 
» 

±l_ 
Ready 



57 

 

 

 
Figure 58  Frank-coded Signal Generator main menu. The sub-menu for generating all the polyphase 

signals are equal. 
 
 

The polyphase-coded signal generators produce different plots to show the main 

characteristics of the signal facilitating understanding and analysis of the signals: PSD of the 

carrier signal, time domain plot of the carrier, PSD of the modulated signal, time domain plot 

of the modulated signal.   

The output of the signal generator can be saved with an automatically generated 

name. The file contains the In-Phase and Quadrature components of the signal. In addition, 

the program provides the directory where the signal was saved as shown in Figure 60. 

 

 

 

.) MATLAB 

File   Edit   View   Web    Window   Help 

D   G* |   X       :   a  «   ^   I  Ä I   ? 

-Ox 

Current Directory: ^J   ... 

******************************************* 
************«*rpACT?    CODE **""************** 
********************************************** 

WHICH  PARAMETER DO  YOU UAHT TO  SET  ? 

1. Amplitude of  the  carrier  signal  - A= 1. 
2. Carrier  frequency -  f   (Hz)   =  1000. 
3. Sampling frequency -  fs   (Hz)=  7000. 
4. Signal  to noise  ratio -  SNR_dB   (dB)   = 0, 
5. Number of phase  codes - m =  8. 
6. Number of cycles per phase  -  cpp = 1. 
7. No changes 

Select a option: 

Ready 



58 

 

 

 
 

Figure 59  Polyphase-coded signal generator screen shot. 

 

 

5. Costas code 
The objective of this program is to generate LPI signals with Costas sequence 

coding. This program named costas.m and can be run from LPIG.m (main menu) or 

run directly. The execution of the program guides the user to the Costas code sub-

menu, where many parameters can be adjusted: (see Figure 60  and Figure 61 ) 

14. Amplitude of the carrier signal. 
15. Sampling frequency (Hertz) 
16. Signal to noise ratio (dB) 
17. Cycles per frequency generated 
18. Costas sequence: the user can pick one of two different Costas sequences. 
 

• ) MATLAB 

File   Edit   View   Web   Window   Help 

D £ jj o  r* 

-|D|x| 

7    Current Directory: I d:tPI Genertj»] J 

Do you want to generate plots of the signal  (Y/y or N/n)  ?y        *| 

Do you want to save the new signal  (Y/y or N/n)  ?y 

Signal and noise save 
Signal only save as : 
Directory: 
» 

<\  

Ready 

ra_l_7_8_l_0 
FR~l~7~8~l_s 

d:\LPI Generator 



59 

 
 

Figure 60  Costas code sub-menu. 
 

 
 

Figure 61  Costas sequence menu. 

 

The Costas-coded signal generator produces the PSD of the resulting signal with noise and 

the PSD of the signal without noise facilitating understanding and analysis of signals. The 

output of the signal generator can be saved with an automatically generated name. The file 

contains the I and Q components of the signal. In addition, the program provides the 

directory where the signal was saved as shown in Figure 63.  

 

 

-,l MAU AB -iDlxl 
Ffe   Ed*   View   Web   Window   Help 

D   G^               1 6  ^   r'      IJ      ?     Current Drectory: diLPI Genen^J 

******************************************* A 
***************CQ2"j"AS  CODE  **************** n ********************************************** 

HHICH  PARAHL1LK DO YOÜ HABT TO  SET  ? 

L.   Amplitude  of  frequencies - A= 1. 
2. Sampling frequency -  fs   (Hz)=  15000. 
3. Signal  to noise  ratio -  SHR_dB   (dB)   = 0. 
4. Cycles per  frequency    =  10. 
5. Ho changes 

Select a option: 

'1 i-r 
Ready 

) MATLAB 

File   Edit   View   Web   Window   Help 

□  G? |   X      & B  ^   °*  |  H |   ?   | Current Directory: |C:^J _J 

* 1 

WHICH FREQUENCY MOULD YOU LIKE TO USE  ? 

1. 4,  7,   1,  6,  S,  2,   3 
2. 2,  6,   3,  8,  ?,   5,   1 

Select an option: 

-i                                                  Li 
▼ i 

Ready 



60 

 

 
 

Figure 62  Costas signals generator.   

 

In Chapter II, this document introduced the most important modulations employed to 

obtain LPI signals as well as the MATLAB® toolbox designed to generated such signals. 

Chapter III illustrates the proposed signal processing based on the use of a parallel filter bank 

and HOS. This chapter provides a theoretical  background and the mathematical  

implementation of both the filter bank and the third-order cumulant estimators. Some 

examples are presented to the end of the chapter. 

|.>MATLAB                                                                                                              I 

Elle   Edit   tflew   Web   WJndow   rjelp 

D   &  1   <K>   Ufa  ßt  *°   °*   1   K 1   ?   | Current Directory: | d:\LPI Qener<_^] 

Do you want  to generate plots of   the signal   (Y/y or  N/n)   ?y 

Do you want  to save  the new signal   (Y/y or  N/n)   ?y 

Signal  and noise save as  :     C_l_15_0 
Signal  only save as  :                    c_l_i5_s 

Directory:                                                  d:\LPI  Generator 
» 

'1                                                                                                                             \>\ 
Ready 



61 

III. SIGNAL PROCESSING: PARALLEL FILTER ARRAYS AND 
HIGHER ORDER STATISTICS 

A.  OVERVIEW OF SIGNAL PROCESSING 

In the early days of electronic warfare, the only option for an operator was to tune the 

radio across the entire available bandwidth to intercept threat signals. After detecting a 

signal, the operator could place noise jamming in the same detected carrier frequency with as 

much power as possible. The operator’s ears and brain acted as the signal processing. 

Today, an operator alone cannot efficiently intercept and analyze threat radar signals 

because of the multiple waveforms and modulations used. Modern receivers must detect, 

intercept, analyze and classify signals in very complex environments with noise, interference 

and multiple signals present. Therefore, LPI radar signals are especially designed to 

complicate the detection process to obscure the radar operations. 

After the signals are detected, they must be classified into groups with similar 

characteristics. Some features are essential to discriminate one signal from another, such as 

carrier frequency, modulation type, rate and time, or angle and phase of arrival. Extracting all 

of these parameters leads to correctly identifying a signal. They can also be used to program 

an electronic attack. Many techniques have evolved lately for detecting and analyzing LPI 

signals. Most of these techniques are centered on time-frequency analysis which has many 

advantages over other periodogram techniques. 

This thesis investigates a signal processing architecture based on the use of parallel 

filter arrays and HOS. A block diagram of this time-frequency approach is shown in Figure 

63 . In this case study, the detector consists of an array of filters followed by higher-order 

cumulant estimators, envelope detectors, and a feature extraction process (done visually).   

The LPIG signal generator constructs an input file in the form of I and Q. The input 

signal x is obtained by finding x = I-jQ. The input signal is then zero-padded in order to 

prevent circular convolution when later multiplying by the FFT of the band pass filter. The 

filter bank decomposes the introduced signal into sub-band signals with narrow frequency 

bands. Therefore, this filter bank was designed as a sine and cosine bank considering the real 

and imaginary part of the complex-valued impulse response of each bandpass filter. 



62 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 63  Overview of the proposed signal processing based on filter banks and HOS. 

 

A third-order cumulant estimator (triple correlation) follows each sub-filter with the 

objectives of suppressing the additive Gaussian noise, extracting information due to 

deviations from Gaussianity and, at the same time, preserving the phase of the unknown 

signal. The outputs from each filter are combined using a envelope-approximation detector. 

The analysis of the envelope-approximation detector output, using a visual feature 

extraction, provides the necessary characteristics to classify the signals. Some of the most 

important features given by the signal processing are the type of modulation (FMCW, 

Polyphase-coded signals, Costas code and PSK/FSK code), carrier frequency, modulation 

bandwidth, modulation time, phases codes, etc. 

 

 

 

Filter Bank 

 Cumulant
 
 

Operator 

 Cumulant
 
 

 Operator 

Frequency
time 
plot 

 
CLASSIFIER Feature 

extraction 
 

 
  Cosine 

Sine 

X = I + jQ 

 
LPI 

signal 
generator 

 
 
 
 
 
 
 

Envelope
 

detector 

X(n) 
 
 
 
 
 
I 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q 

Z(n) 



63 

 

B.  UNIFORM ARRAY OF FILTERS 

1.  Background of Filter Bank 

The purpose of the filter bank is to split the frequency band of a signal into several 

sub-bands and to process the sub-band signals separately. The output of the sub-filters will be 

linearly independent, if the frequency functions of the sub-bands are almost non-overlapping 

[10] .  

The impulse responses of a uniform filter bank with L subfilters are denotated hm(n), 

and the corresponding transfer functions are denotated Hm(f). The impulse response is given 

by 

2 ( 1)1( ) ( )  
j m n

L
m oh n h n e

L

π −

=     (3.1.1) 

where m = 1, 2, …, L and ho(n) is the impulse response of a prototype lowpass filter with 

frequency response of Ho(f). The subfilters are constructed by the following relationship: 

 
1

( ) 1
L

m
m

H f
=

=∑  (3.1.2) 

One prototype filter that fulfills this demand is 

 
2

1 | |,    | | 1/1 ( )
0,                 else2

1 1 sin /( )
2 /

o

o

L f f L
H f

n Lh n
L n L

π
π

− < 
=  

 

 =  
 

 (3.1.3) 

 

It will be approximated by a FIR filter of length Nf. From an implementation form of view, it 

is advantageous to relate the length Nf an the number L of subfilters according to Nf = lL 

where l is an integer. An approximation of |Ho(f)| in (3.1.3) with l =2 is shown in Figure 64 , 

the first three bandpass subfilters are depicted when the length of the approximation of  ho(n) 

is Nf =128 and L=68. This approximation will only be slightly improved if l >2. Thus, for a 

given L. there will be only a minor improvement of the estimate by choosing l>2. The effect 

on the approximated impulse response is that its tails will be longer. It will, on the other 



64 

hand, increase the number of the numerical operations, which is proportional to Nf. The 

quality of the estimated signal will however be improved by increasing L. [10]  

 

 

 

 

 

 

Figure 64  Magnitude function of the prototype low pass filter 

 

 

2.  The Design of a Uniform Filter Bank 
When the impulse responses of a uniform filter bank with L sub-filters are hm(n), and 

the corresponding transfer functions are Hm(f), the impulse responses are given by (3.1.1). 

Where ho(n) is the impulse response of a prototype low-pass filter with a frequency response 

of Ho(f), m = 1,…,L is the filter number ,  k is the gain, fs is the sampling frequency and f is a 

frequency vector starting in 0 Hz with increments of 
( )
sf

length input
, up to a length of 

( )
s

s
ff

length input
− . Another example of a lowpass filter is 

 

2

2

2
( )  p

o
p

p
p

k
h n

s s
q

ω
ω

ω

×
=

+ +
       (3.1.4) 

 

where where 2  and 2
2

s
p

f s fj
L

ω π π= = . For this design the following parameters were used; 

k = 1 and qp = 0.707 (quality factor) and f is the frequency vector built as 

Ho(f)|

     -1/L                       0                        1/L 
Freq., f



65 

 0 : :
( ) ( )
s s

s
f ff f

length input length input
= −  (3.1.5) 

For example is the sampling frequency is 7 KHz, and the input number of samples is 

N=1225, then 

7000 70000 : : 7000
1225 1225

f = −     (3.1.6) 

The impulse response is obtained using 

 { }1( ) ( )o oh n H f−= ℑ  (3.1.7) 

The bandpass filter is creating by shifting the lowpass filter transfer function as 

2( ) ( ) ij f n
i oh n h n e π= ×         (3.1.8) 

where  

 
2

s
i i

ff f
L

= +  (3.1.9) 

with 
2

sf
L

 being the filter bandwidth.  

 To construct the filter bank, each bandpass filter is split into a Cosine and Sine filter 

{ }
{ }

( ) ( )

( ) ( )
c i

s i

h n real h n

h n imag h n

=

=
     (3.1.10) 

After constructing the cosine and sine filters in the time domain, the frequency domain is 

then 

{ }
{ }

( ) ( )

( ) ( )
c c

s s

H s h n

H s h n

= ℑ

= ℑ
     (3.1.11) 

 

 

The frequency domain filtering is then accomplished as 



66 

 
( ) ( ) ( )
( ) ( ) ( )

c c

s s

Y s X s H s
Y s X s H s

=
=

  (3.1.12) 

To get the time domain filter output  

{ }
{ }

1

1

( ) ( )

( ) ( )
c c

s s

y s Y s

y s Y s

−

−

= ℑ

= ℑ
    (3.1.13) 

 

 

  

 

 

 

 

 

 

  

 

Figure 65  Final sine cosine filter bank. 

 

 

 

 

 

 

 

 

Received data: 
In-Phase(I) 

Quadrature (Q) 

. 

. 

. 

Sine filter

. 

. 

. 

.y1S 

.y2S 

.y3S 

.y4S 
 
 
 
 .yiS 

. 

. 

. 

Cosine filter

. 

. 

. 

.y1C 

.y2C 

.y3C 

.y4C 
 
 
 
 .yiC 

I

Q



67 

3. Responses of the Parallel Filter Array to Different LPI Signals 

With the objective of illustrating the response of the designed filter bank, the 

following section presents output for different LPI signals. 

a.  BPSK 
Table 4  shows a BPSK signal with carrier frequency equal to 1 KHz, 

sampling frequency equal to 7 KHz, 7-bit Barker code and 5 cycles per bit. 

Figure 66 through Figure 68 show the output of the parallel filter arrays for 32 

filters with signal only and SNR equal to 0 dB and –5 dB. The bandwidth of 

each filter is 

7000 109.375
2 2(32)

sfB
L

= = =  Hz. 

Parameters Values

Carrier Frequency 1000 KHz.

Sampling Frequency 7000 KHz.

Barker phase codes 7 bits

SNR Signal only, 0 dB, -5 dB  

Number of cycles per bit 5
 

Table 4   BPSK parameters. 

 

 

  

 

 

 

  

 

 

Figure 66  Response of the filter bank for a BPSK signal without noise, filter number versus samples 
with filter bandwidth = 109.375 Hz. 



68 

 

 

 

 

 

 

 

 

 

 

 

Figure 67  Response of the filter bank for a BPSK signal with SNR=0 dB. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 68  Response of the filter bank for a BPSK signal with SNR=-5 dB.  

 



69 

b.  FMCW 
Table 5  shows a FMCW signal with carrier frequency equal to 1 KHz, 

sampling frequency equal to 7 KHz, modulation bandwidth equal to 500 Hz 

and modulation period of 10 ms. Figure 69 through Figure 71 show the output 

of the parallel filter arrays for 32 filters with signal only and SNR equal to 0 

dB and –5 dB. The bandwidth of each filter is 7000 109.375
2 2(32)

sfB
L

= = = Hz. 

 

Parameters Values 

Carrier Frequency 1000 KHz.

Sampling Frequency 7000 KHz.

Modulation Bandwidth 500 Hz.

SNR Signal only, 0 dB, -5 dB  

Modulation period 10 ms
 

Table 5   FMCW parameters. 

 

 

 

 

 

 

 

 

 

 

Figure 69  Response of the filter bank for a FMCW signal without noise. 

 

 



70 

 

 

 

 

 

 

 

 

 

 

 

Figure 70  Response of the filter bank for a FMCW signal with SNR=0 dB. 

 

 

 

 

 

 

 

 

 

 

 

Figure 71  Response of the filter bank for a FMCW signal with SNR=-5 dB. 

 



71 

 

c.  Polyphase code P4 
Table 6   shows a P4 signal with carrier frequency equal to 1 KHz, sampling 

frequency equal to 7 KHz, 64 phases and 5 cycles per phase. Figure 72 

through Figure 74 show the output of the parallel filter arrays for 32 filters 

with signal only and SNR equal to 0 dB and –5 dB. The bandwidth of each 

filter is 7000 109.375
2 2(32)

sfB
L

= = = Hz. 

 

Parameters Values 

Carrier Frequency 1000 KHz.

Sampling Frequency 7000 KHz.

Number of phases 64

SNR Signal only, 0 dB, -5 dB  

Number of cycles per phase 5

Number of code period 5
 

Table 6   P4 parameters. 
 

 

 

 

 

 

 

 

 

 

 

Figure 72  Response of the filter bank for a P4 signal without noise. 



72 

 

 

 

 

 

 

 

 

 

 

 

Figure 73  Response of the filter bank for a P4 signal with SNR=0 dB. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 74  Response of the filter bank for a P4 signal with SNR=-5 dB. 



73 

 

d. Costas Code 
Table 7  shows a P4 signal with carrier frequency equal to 1 KHz, sampling 

frequency equal to 7 KHz, 64 phases and 5 cycles per phase. Figure 75 

through Figure 77 show the output of the parallel filter arrays for 32 filters 

with signal only and SNR equal to 0 dB and –5 dB. The bandwidth of each 

filter is 15000 117.1875
2 2(32)

sfB
L

= = =  Hz. 

 

Parameters Values 

Costas Sequence 4-7-1-6-5-2-3 

Sampling Frequency 15000 Hz 

Cycles per frequency 10 

SNR Signal only, 0 dB, -5 dB  

Number of signals 5 

 
Table 7   Costas code parameters. 

 

 

 

 

 

 

 

 

 

 

Figure 75  Response of the filter bank for a Costas  signal without noise. 



74 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 76  Response of the filter bank for a Costas signal with SNR= 0dB. 
 

 
 

Figure 77  Response of the filter bank for a Costas signal with SNR= -5dB. 
 

 



75 

C.  HIGHER ORDER STATISTICS (ESTIMATORS) 

1. Introduction to Higher-Order Estimators 

Recently, HOS have begun to find wide applicability in many fields, such as sonar, 

radar, plasma, physics, biomedicine, seismic data processing, image reconstruction, time-

delay estimation, etc. These estimators are well known as cumulants. Their association with 

Fourier Transforms not only show the amplitude information but also can preserve phase 

information in a process. 

 

 

 

 

 

 

 

 

 

Figure 78  The higher-order spectral classification map of a discrete signal X(k). F[.] denotes n-
dimensional Fourier Transform. (From[11] ) 

 

In power spectrum estimation, the Fourier transform of the autocorrelation suppresses 

the phase relationship between frequency components. Power spectrums are phase blind. The 

information contained in the power spectrum is basically that which is present in the 

autocorrelation sequence; this is sufficient for the complete statistical description of a 

Gaussian signal. However, there are real situations where we must see beyond the power 

spectrum of a signal to extract information regarding deviation from Gaussianity and the 

presence of phase relations. LPI radar signals are examples of such a situation. 

Cumulants, on the other hand, are blind to any kind of Gaussian processes. Cumulant-

based methods improve SNR when signals are corrupted by Gaussian noise. Third-order 

cumulants are applicable when we are dealing with non-Gaussian or nonlinear systems; many 

Discrete-Time Signal, 
x(n) 

Time Domain 

 
Autocorrelation

computation 

Third-order 
statistics 

computation 

Fourth-order 
statistics 

computation 

nth-order 
statistics 

computation 

C2(τ) 

C3(τ1, τ2) 

C4(τ1, τ2, τ3) 

Cn(τ1, τ2… τn-1) 

 
F1[.] 

 
F2[.] 

 
F3[.] 

 
Fn[.] 

 
C2(ω) Power  spectral density 

 
C3(ω1, ω2) Bispectrum 

 
C4(ω1, ω2, ω3 ) Trispectrum 

 
Cn(ω1…ωn-1 ) nth-order spectrum 



76 

real world applications have this characteristic. The development of cumulants and 

polyspectra has paralleled the development of traditional correlation and its associated 

spectrum.  

One of the most important motivations for the use of higher-order estimators is based 

on the property that for Gaussian signals only the whole cumulant spectra of order greater 

than two is identically zero. If a non-Gaussian signal is received along with additive 

Gaussian noise, transforming to a higher-order cumulant domain eliminates the noise. In 

general, cumulant spectra can become high SNR domains in which one may perform 

detection, parameter estimations or even an entire signal reconstruction. 

If a random process is symmetrically distributed, then its third-order cumulants equal 

zero; therefore, for such a process it is necessary to use fourth-order cumulants. In addition, 

some processes have small third-order cumulants and much larger fourth-order cumulants. 

The biggest disadvantage of using HOS is that it requires longer data lengths than the 

correlation-based method. Longer data lengths are needed in order to reduce the variance 

associated with estimating the HOS from real data using sample-averaging techniques. 

   The idea behind the use of higher-order statistics in the proposed signal processing 

is precisely to evaluate the advantages of this method when detecting LPI (LPI) radar signals; 

to eliminate the noise added to the signal and to increase the SNR in later extracting the 

parameters needed for the correct classification.[12]    

 

 

 

 

 

 

 

 

 



77 

2. Mathematical implementation of HOS 

In Sattar et al [9] they describe mathematically the application of HOS to estimate 

signals. The following development is an extract of their approach: 

The output of each sub-filter is followed by a third-order cumulant estimator. A good 

approximation of a third-order cumulant estimator of a zero-mean signal is given by 

2

1

^

3, 1 2 1 2
2 1

1( , ; ) ( ) ( ) ( )
( 1)

S

z k k k
n S

C l l k z n z n l z n l
S S =

 
= + + − + 

∑       (3.2.1) 

where l1 and l2 are the delays and 

{ }
{ }

1 1 2

2 1 2

max , ,

min , ,

( ) ( )            
( )

0                              otherwisek

S k K k K l k K l

S k K k K l k K l

z n w n k k K n k K
z n

= − − − − −

= + + − + −

− − ≤ ≤ + 
=  

 

 

 

The length of the window w(n) in the above equation is 2K+1. For this implementation K=2 

is used.  

The estimates 
^

3 1 2( , ; )C l l k are reduced to one-dimensional (1-D) functions. These 

^

3( , ; )C l l k are suitable functions for detection, because the diagonal cumulant slices extract 

useful information, while the computational complexity remains modest. However, the 

cumulants will decrease rapidly with increasing l . Thus, for each frequency band, the 

nonlinear function 

^ ^

3 33, ( ) (0,0; ) ( 1,1; )i k C k C kρ = − −         (3.2.2) 

is used for the detection of LPI signal parameters. 

 

 

 



78 

As shown in [9] , this operator can be performed as 

3
3,

1( ) ( ( ) ( ))
2 1

1               ( ( ) ( )) ( ( 1) ( 1))( ( 1)
2 1

i ik ik
n

ik ik ik ik ik
n

k s n v n
K

s n v n s n v n v n
K

ρ  = + − + 
  + × − + − + + 

∑

∑
 

 

3
3,

1( ) ( ( ( ) ( )) ( ( ) ( 1) ( 1)
2 1

                                + ( ) ( 1) ( 1)
                                + ( ) ( 1) ( 1)
                          

i ik ik ik ik ik
n n

ik ik ik

ik ik ik

k s n v n s n s n s n
K

s n s n v n
s n v n s n

ρ  = + − − + + 
− +
− +

∑ ∑

      + ( ) ( 1) ( 1)
                                +v ( ) ( 1) ( 1)
                                +v ( ) ( 1) ( 1)
                                +v ( ) ( 1) ( 1)
      

ik ik ik

ik ik ik

ik ik ik

ik ik ik

s n v n v n
n s n s n
n s n v n
n v n s n

− +
− +
− +
− +

                          +v ( ) ( 1) ( 1)))ik ik ikn v n v n− +

  (3.2.3) 

In order to separate the cross-terms, we can write the previous equation as 

3 3 2 2 2
3,

1( ) ( ( ( ) ( ) 3 ( ) ( ) 3 ( ) ( ))
2 1

                                - ( ( ) ( 1) ( 1)

                                + ( ) ( 1) ( 1)
                 

i ik ik ik ik ik ik
n

ik ik ik
n

ik ik ik

k s n v n s n v n s n v n
K

s n s n s n

s n s n v n

ρ  = + + + + 

− +

− +

∑

∑

               + ( ) ( 1) ( 1)
                                + ( ) ( 1) ( 1)
                                +v ( ) ( 1) ( 1)
                                +v ( ) ( 1) (

ik ik ik

ik ik ik

ik ik ik

ik ik ik

s n v n s n
s n v n v n

n s n s n
n s n v n

− +
− +

− +
− 1)

                                +v ( ) ( 1) ( 1)
                                +v ( ) ( 1) ( 1)))

ik ik ik

ik ik ik

n v n s n
n v n v n

+
− +
− +

 

 

 

3 3
3,

1( ) ( ( ( ) ( ) ( ) ( 1) ( 1)
2 1

                                - ( ) ( 1) ( 1))
                                cross-terms

i ik ik ik ik ik
n

ik ik ik

k s n v n s n s n s n
K

v n v n v n

ρ  = × + − − + + 
− +

+

∑
 (3.2.4) 



79 

Now, the expression for 3, ( )i kρ  can be derived as a third-order function without having 

third-order harmonics. Assuming the output of the ith filter for the cosine bank is [9]  

1( ) cos( )     c
kz n A n i k K n k Kω ψ= + − ≤ ≤ +             (3.2.5) 

then 

[ ]3
3^

3 (0,0; ) ( ) cos3( ) 3cos( )
4

k K k K
c c

k i i i i
n k K n k K

AC k z n n nω ψ ω ψ
+ +

= − = −

 
= = + + + 

 
∑ ∑     (3.2.6) 

and 

^

3

3

`

i

( 1,1; ) ( ) ( 1) ( 1)

                     = (cos( ) cos3( )
4

                      +2cos2 cos( ))

k K
c c c c

k k k
n k K

k K

i i i i
n k K

i i

C k z n z n z n

A n n

n

ω ψ ω ψ

ω ω ψ

+

= −

+

= −

− = − +

 
+ + + 

 
+

∑

∑      (3.2.7) 

In the same way, if the output from the sine filter bank will be 

1( ) sin( )     S
kz n A n i k K n k Kω ψ= + − ≤ ≤ +  ,     (3.2.8)

  

then 

[ ]3
3^

3 (0,0; ) ( ) 3sin( ) sin 3( )
4

k K k K
s s

k i i i i
n k K n k K

AC k z n n nω ψ ω ψ
+ +

= − = −

 
= = + − + 

 
∑ ∑     (3.2.9) 

and 

^

3

3

`

i

( 1,1; ) ( ) ( 1) ( 1)

                      = (sin( ) sin3( )
4

                      +2cos2 sin( )).

k K
s s s s

k k k
n k K

k K

i i i i
n k K

i i

C k z n z n z n

A n n

n

ω ψ ω ψ

ω ω ψ

+

= −

+

= −

− = − +

 
+ + + 

 
+

∑

∑        (3.2.10) 

 

 



80 

Using 3.2.6, 3.2.7, 3.2.9 and 3.2.10, the complex expression of 3, ( )i kρ would be 

 

3, 3 3

3 3

3
3( ) 3( )

3
( ) 3( )

(

( ) (0,0; ) (0,0; )

           [ ( 1,1; ) ( 1,1; )]

           [ 3 ]
4

              [ ]
4

              2cos 2

i i

i i

i

c s
i

c s

k K
j w n i j w n i

n k K

k K
j w n i j w n i

n k K
j w n

i

k C k jC k

C k jC k

A e e

A e e

e

ψ ψ

ψ ψ

ρ

ω

+
− + − +

= −

+
+ − +

= −

= +

− − + −

= +

− +

+

∑

∑
)

3
( )           2(1 cos 2 ) ]

4
i

i

k K
j w n i

i
n k K

A e

ψ

ψω

+

+
+

= −

= −∑

 

 
3

( )2           = sin
4

i

k K
j w n i

i
n k K

A e ψω
+

+

= −
∑ . (3.2.11) 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 

 

3. Implementation of the Parallel Filter Arrays and HOS 
To implement the filter bank and HOS described above, a set of programs was 

developed in MATLAB® version 6.1 running on a personal computer with the 

characteristics described in Table 8  . 

  

Characteristic  

Processor (CPU) Pentium IV 

Speed 2 GHz. 

RAM 1 Gigabyte 

Operating system Windows 2000 Professional 

MATLAB® Version 6.1 

 

Table 8   Characteristics of software and hardware used in the simulation. 

A set of two (02) programs were developed to perform all the tasks required: 

 

a. Graphic User Interface (GUI). 
The program called hos_gui_1.m was developed to call the main program. 

Using this GUI, the user only needs to input the right data in the fields 

provided and push the bottom to execute the program. 

The main window requests information in four different fields: 

• Data File: File name of the signal data correctly formatted in the I and Q 
components. The name does not need the extension .mat.  

• Directory: Location of the file in any of the storage devices of the computer: 
Hard disk, floppy, zip drive, etc. If the exact location is not known, the letter 
of the device containing the file will be enough. 

• Sampling Frequency: Frequency used to get samples from the input signal. It 
will be provided with the input signal. 

• Number of Filter Bank: The input signal can be divided into 32, 64 or 128 
sub-frequencies. This pop-up menu presents the number of filters that will be 
used to split the signal. The bandwidth of each filter is a function of the 
number of filters desired and the sampling frequency. If the number of filters 
increases and the sampling frequency stays constant, the bandwidth of each 
filter will decrease. 



82 

• Solve: This button executes the main program and, as a result, four plots are 
provided. 

 
 

MATLAB® presents some flaws in executing and handling windows that must 

be known by the user. For example, every time the user enters new data in the 

fields, the “enter” key must be pushed, otherwise the new data is not accepted. 

In addition, the main program and the GUI generator must be in the same 

directory.  

 

 

 

 
Figure 79  Graphic User Interface for the execution of the filter bank and calculation of the HOS. 

 



83 

 
b.  Main Program. 
The main program, taboada_hos_gui.m,  performs all the calculations needed 

to implement the filter bank and execute the algorithms necessary to obtain 

the higher-order estimators. This file is in Appendix B.  

This program generates four different plots presenting characteristics of the 

resulting signal after the filter bank and before the higher-order estimators. 

• Frequency-Time plot of the signals after the Filter Bank 
• Frequency-Time plot of the signal after the Higher-Order 

estimators 
• Frequency-Amplitude plot 
• Filter-Amplitude plot 

 

  

c. Resulting Plots for Different LPI Radar Signals 
(1)  FMCW 

Table 9  shows a FMCW signal with carrier frequency equal to 1 KHz, 

sampling frequency equal to 7 KHz, modulation bandwidth equal to 500 Hz 

and modulation period of 10 ms. Figure 80 shows the output of HOS for 

signal only and SNR equal to 0 dB.  

 
 
 

Parameters Values 

Carrier Frequency 1000 KHz.

Sampling Frequency 7000 KHz.

Modulation Bandwidth 500 Hz.

SNR Signal only and  0 dB 

Modulation period 10 ms
 

Table 9   FMCW parameters. 
 



84 

This figure presents the output after the parallel filter arrays, the output after 

HOS and two different views, the amplitude-frequency view and the 

amplitude-filter view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 80  Resulting plots from the signal processing: before and after HOS and two differents views, 
amplitude-frequency and amplitude-filters (signal only). 

 

 

 

 

 



85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 81  Resulting plots from a FMCW signal: before and after HOS and two differents views, 

amplitude-frequency and amplitude-filters (SNR = 0 dB). 

 

 

 



86 

 

(2) Polyphase P4 

Table 10  shows a P4 signal with carrier frequency equal to 1 KHz, sampling 

frequency equal to 7 KHz, 64 phases and 5 cycles per phase. Figure 82 and 

Figure 83 shows the output of HOS for signal only and SNR equal to 0 dB.  

 
 

Parameters Values 

Carrier Frequency 1000 KHz.

Sampling Frequency 7000 KHz.

Phases 64.

SNR Signal only, -5 dB

Number of cycles per phase 5
 

Table 10   P4 parameters. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 82  Resulting plots from a P4 signal : before and after HOS and two different views, amplitude-

frequency and amplitude-filters (signal only). 



87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 83  Resulting plots from a P4 signal : before and after the HOS and two different views, 

amplitude-frequency and amplitude-filters (SNR = -5 dB). 

 

Chapter III introduced the proposed signal processing based on the use of a parallel 

filter bank and HOS. This chapter provided a theoretical  background and the mathematical  

implementation of both the filter bank and the third-order cumulant estimators. Chapter IV 

shows the analysis of a test signal matrix designed to test the effectiveness of the proposed 

signal processing.  

 

 

 



88 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



89 

IV. ANALYSIS OF RESULTS 

Using the LPI signal generator described in Chapter II, different inputs signals were 

designed to demonstrate the performance of the signal processing. For each modulation, 

some of the parameters were varied to create a complete set of diverse signals where their 

most important characteristics are demonstrated. The analysis of the signals and their results 

are presented in the following order: 

a. A table showing the parameters of the input signal and the extracted parameters 

after the processing. 

b. A tutorial on how to calculate the parameters . 

c. Graphical description of the input signal: PSD, Time domain plot, PAF and cuts 

along the 0 Doppler and the 0 delay axis. 

d. Resulting plots after the HOS signal processing: Resulting signal after the parallel 

filter arrays, resulting signal after HOS, amplitude-filter plot after HOS and 

amplitude-frequency plot after HOS. 

e. The most important parameters are indicated in plots with lines, arrows and 

comments. 

 

The carrier frequency is kept constant for all the input signals in this research 

(fc=1000 Hz) to minimize the number of signals to analyze. Additionally, the sampling 

frequency is selected to be seven times the carrier frequency (fs = 7000 Hz). Only in the case 

of Costas-coded signals, the sampling frequency is set to 15000 Hz since the highest 

frequency in Costas set is 7000 Hz. 

 

 

 

 

 

 



90 

A. TEST SIGNAL 

One-frequency signal and a two-frequency signal are generated and analyzed to 

demonstrate the response of the parallel array of filters and the application of third-order 

cumulant estimators. Table 11  describes two different signals. 

 

No Signal file Carrier Frequency Sampling Frequency SNR 

1 T 1 7 1 s 1000 7000 -

2 T 12 14 2 s 1000,  2000 14000 -
 

Table 11   Test signals. 

 

This section first describes the most important characteristics of the input signal providing 

the PSD. Then, the resulting plots after the proposed signal processing are presented and 

analyzed in detail. 

As a result of selecting 64 filters in the parallel filter arrays, the bandwidth of each 

sub-filter is 54.68 Hz. This value is obtained by 

   

2
sfB
L

=      (4.1.1) 

where fs is the sampling frequency in Hz and L is the number of filters in bank. The 

simplicity of the results obtained by processing these two signals can help understand better 

what we expect when processing more complex signal such as BPSK, FMCW or  polyphase-

coded signals.  

 

 

 

 

 
 
 



91 

1.  Single tone 

Table 12  describes a single tone signal with carrier frequency 1KHz and sampling 

frequency 7 KHz which is analyzed using the parallel filter arrays and HOS. Figure 84 

presents the PSD of the input signal, showing the power distribution of the signal in each of 

the frequencies. As a result of a single tone, all the power is concentrated in the carrier 

frequency. 

 

Single tone  – Parameters Input Signal Obtained Comment 
Carrier frequency (Hz) 1000 1000  
Sampling frequency (Hz) 7000 7000 Given 
SNR Signal only -  

Table 12   Test Signal with one carrier. 

 

 
Figure 84  Single tone  PSD.  

 

The response of the parallel filter arrays is presented in Figure 85 .  The objective of 

the filter bank is to decompose the input signal into sub-band frequency bands. This plot 

provides a good frequency-time representation of the signal.   



92 

 
 

Figure 85  Single Tone output of the parallel filter arrays.  

 

Then, each sub-band filter is followed by a third-order cumulant estimator to suppress 

the white Gaussian noise. Since any of the test signals don’t have noise added, the result from 

after applying HOS is not very different to the previous step.  

 
 

Figure 86  Single tone output after HOS. 



93 

Figure 87 shows an amplitude-frequency view of the resulting figure after HOS. This 

plot reveals the center frequency of the signal (carrier) and the bandwidth occupied by a 

single tone. 

 

 
 

Figure 87  Single tone amplitude-frequency plot. 

 

 

 

 

 

 

 

 

 

 



94 

 

2. Two-frequency tone 
Figure 88  presents the PSD of a two-frequency signal with carrier frequencies of 1 

KHz and 2 KHz, and sampling frequency equal to 14 KHz. The power is distributed in the 

two carrier frequencies. 

 

Two-frequency signal  – 
Parameters 

Input Signal Obtained Comment 

Carrier frequency (Hz) 1000, 2000 1000, 2000  
Sampling frequency (Hz) 14000 14000 Given 
SNR Signal only -  
 

Table 13   Test Signal with two carrier frequencies. 

 

 

 
Figure 88  Two-frequency tone  PSD. 

 

 

 



95 

Figure 89 shows the output of the parallel filter arrays. The input signal is 

decomposed in sub-band frequencies to provide a complete frequency-time description. The 

carrier frequencies are located in filters 9 and 19. It means that the detected carrier 

frequencies are 984.33 ± 109.37  Hz and 2078.03 ± 109.37 Hz. The error is related to the 

bandwidth of each sub-filter, which is calculated by equation (4.1.1) and it depends on the 

sampling frequency and the number of filters in bank. 

 

 
Figure 89  Two-frequency signal output of the parallel filter arrays. 

 

Because this signal doesn’t have noise added the third-order estimators applied to 

each sub-filter don’t produce an important change in the previous resulting plot. The 

performance of the HOS will be observed later when analyzing more complex noisy signals. 

 

 

 



96 

 
Figure 90  Two-frequency signal output after HOS.  

 

The amplitude-frequency view provided in Figure 91 is and important representation 

of the signal in the frequency domain where all the frequency components can be observed. 

In the case of a two-frequency signal, two spikes appear centered at the carrier frequencies. 

 
Figure 91  Two-frequency signal amplitude-frequency plot after HOS. 

 
 
 



97 

B.  BPSK 

Binary Phase Shift-Keying (BPSK) is modulation technique that has proven to be 

extremely effective in communication and radar systems. Even though BPSK is not a 

technique employed in LPI radar, this technique is an excellent test signal in evaluating the 

performance of the proposed signal processing.  

In BPSK modulation, the phase of the frequency carrier is shifted 180 degrees in 

accordance with the digital bit stream. The digital coding scheme used is called Non-Return-

to-Zero (NRZ-M). A “one” causes a phase-transition, and a “zero” does not produce a 

transition. 

As shown in Table 14  a set of twelve signal is analyzed to evaluate the performance 

of the parallel filter arrays detecting and identifying the most important parameters in the 

input signal. Some parameters are varied in the input signal, such as the number of bits in 

Barker code, the number of cycles per bit and SNR. Only the analysis of one signal is 

presented in this thesis. The rest of the results are included in a technical report to be 

published. 

 

No Signal file Carrier 

Frequency 

Sampling 

Frequency 

Bits in Barker code Cycles per 

bit 

SNR 

1 B 1 7 7 1 s 1000 7000 7 1 -

2 B 1 7 7 1 0 1000 7000 7 1 0

3 B 1 7 7 1 -6 1000 7000 7 1 -6

4 B 1 7 11 1 s 1000 7000 11 1 -

5 B 1 7 11 1 0 1000 7000 11 1 0

6 B 1 7 11 1 -6 1000 7000 11 1 -6

7 B 1 7 7 5 s 1000 7000 7 5 -

8 B 1 7 7 5 0 1000 7000 7 5 0

9 B 1 7 7 5 -6 1000 7000 7 5 -6

10 B 1 7 11 5 s 1000 7000 11 5 -

11 B 1 7 11 5 0 1000 7000 11 5 0

12 B 1 7 11 5 -6 1000 7000 11 5 -6
 

Table 14   Matrix of input signals for BPSK. 



98 

 

1. BPSK, 7-bit Barker code, 5 cycles per phase and signal only  
 Table 15  describes a BPSK signal with carrier frequency 1 KHz, sampling 

frequency 7 KHz, 7-bit Barker code, and 5 cycles per bit. By increasing the cycles per phase 

to 5, the bandwidth is reduced to a fifth of its original bandwidth, as shown in equation(4.1.3)

. In the same way, the modulation period is also affected because it depends on the cycle per 

phase. 

 

BPSK – Parameters Input Signal Obtained Comment 
Carrier frequency (Hz) 1000 1000  
Sampling frequency (Hz) 7000 7000 Given 
Bandwidth (Hz) 200 218.64  
Bits per Barker code 7 -  
SNR (dB) Signal only -  
Cycles per bit 5 5  
Code Period (ms) 35 35  

 
Table 15   BPSK, 7-bit Barker code, 5 cycles per phase and signal only.  

 

 

The modulation period of the BPSK signal is 

(Cycles/bit)(Barker bits) (5)(7)= 35  ms
1000c

c

t
f

= =           (4.1.2) 

 

The bandwidth of the signal depends on the cycles per bit (or chirp) as 

1000 Hz  200 Hz 
Cycles per bits 5 cycles per bit

cfB = = =     (4.1.3)        

 

The PSD for the BPSK signal without noisy is presented in Figure 92 .  This plot 

provide a description of the distribution of the power in the frequency domain confirming 

results in (4.1.2) and (4.1.3).  



99 

 
Figure 92  BPSK, 7-bit Barker code, 5 cycles per phase, signal only PSD. 

 
 
 

Figure 93 shows the resulting plots obtained by analyzing the signal with the 

proposed signal processing. Figure 93  (a) illustrates the output of the parallel filter arrays. 

The input signal is divide into small frequencies to provide a complete time-frequency 

description. Figure 93 (b) corresponds to the resulting plot after the third-order cumulant 

estimators. Due to the lack of noise in this signal, the only effect of the HOS is a small 

degradation of the signal. 

Figure 94 makes a zoom in the resulting plot after HOS to estimate carrier frequency, 

bandwidth and code period of the processed signal. Figure 95 shows an amplitude-frequency 

view of the resulting signal after HOS. This plot can be used to examine the distribution of 

the different frequency component the signal in the filter bank.    

 

 



100 

 
(a) 

 

 

 
(b) 

 
Figure 93  BPSK, 7-bit Barker code, 5 cycles per phase and signal only (a) Output of the parallel filter 

arrays  (b) Output after HOS. 

 



101 

 
 

 
Figure 94  BPSK, 7-bit Barker code, 5 cycles per phase and signal only, zoom in the output  after HOS. 

 

 
 

Figure 95  BPSK, 7-bit Barker code, 5 cycles per phase and signal only, amplitude-frequency plot . 
 
 
 
 



102 

 
2. BPSK, 7-bit Barker code, 5 cycles per phase and SNR=0 dB 
 Table 16  describes a BPSK signal with carrier frequency of 1 KHz, sampling 

frequency of 7 KHz, 7-bit Barker code, 5 cycles per bit and SNR = 0 dB. Code period and 

bandwidth are calculated by Equations (4.1.4) and (4.1.5).  

 

BPSK - Parameters Input Signal Obtained Comment 
Carrier frequency (Hz) 1000 1000  
Sampling frequency (Hz) 7000 7000 Given 
Bandwidth (Hz) 200 218.64  
Bits per Barker code 7 -  
SNR (dB) 0 -  
Cycles per bit 5 -  
Code Period (ms) 35 35  
 

Table 16   BPSK, 7-bit Barker code, 5 cycles per phase and SNR=0 dB. 
 
 
 

The modulation period of the BPSK signal is 

(Cycles/bit)(Barker bits) (5)(7)= 35  ms
1000c

c

t
f

= =           (4.1.4) 

The bandwidth of the signal depends on the cycles per bit (or chip) as 

1000 Hz  200 Hz 
Cycles per bits 5 cycles per bit

cfB = = =            (4.1.5) 

 

The PSD for the BPSK signal with SNR = 0 dB is shown in Figure 96.  This plot 

provides a detailed description of the distribution of the power in the frequency domain, 

where the carrier frequency and the bandwidth of the signal can be compared from the results 

in (4.1.4) and (4.1.5).  

 



103 

 
Figure 96  BPSK, 7-bit Barker code, 5 cycles per phase and SNR=0 dB PSD. 

 

 

Figure 97 shows the resulting plots from the signal processing. Figure 97 (a) 

illustrates the output of the signal after the filter bank. Even though it provides a good 

description of the signal in the time-frequency domain, noise is presented along the signal. 

Figure 97 (b) proves the effectiveness of the third-order estimator to suppress the Gaussian 

noise. Most of the parameters can be identified and estimated. 

Figure 98 shows a zoom in the resulting plot after HOS. Carrier frequency, bandwidth 

and modulation period are measured and recorded in the previous table. Figure 99 provides 

an amplitude-frequency plot.  

 
 
 
 
 



104 

 
(a) 

 

 

 
(b) 

 
Figure 97  BPSK, 7-bit Barker code, 5 cycles per phase and SNR=0 dB (a) Output of the parallel filter 

arrays  (b) Output after HOS. 

 



105 

 
 

 
Figure 98  BPSK, 7-bit Barker code, 5 cycles per phase and SNR=0 dB, zoom in the output after HOS. 

 

 
 

 
Figure 99  BPSK, 7-bit Barker code, 5 cycles per phase and SNR=0 dB, amplitude-frequency plot. 

 
 
 



106 

3. Summary 

Figure 100 shows a summary chart of the performance of the parallel filter arrays and 

HOS to detect carrier frequency, bandwidth, code period and bits in Barker code in the BPSK 

signals analyzed previously. This figure presents a comparison of the parameters in three 

different environments: signal only (blue), SNR=0 dB (red) and SNR=-6 dB (yellow). The 

percentage in the chart describes an average of how close is the extracted values from the 

theoretical values. 

After processing the signals, the plots provide very precise values for carrier 

frequency, bandwidth and code period except when the SNR is less than –6 dB. The number 

of bits in the Barker code can be extracted only when noise is not added to the signal.   

  

BPSK Carrier freq.(Hz) Bandwidth (Hz) Code period (ms) Bits/code 

Signal only 117% 117% 100% 100% 
0 dB 122% 122% 100% 0% 

(-) 6 dB 55% 117% 50% 0% 

10%

30%

50%

70%

90%

110%

130%

150%

Carrier freq.(Hz) Bandw idth (Hz) Code period (ms) Bits/code

Parameters

Pe
rc

en
ta

ge Only signal

0 dB

(-) 6 dB

 
Figure 100  Performance of the signal processing detecting BPSK signals. 

 

 

 



107 

C. FMCW 

The most popular modulation for LPI applications is the triangular modulation of a 

Frequency Modulated Continuous Wave (FMCW). As said before, the linear FMCW emitter 

uses a continuous 100 % duty-cycle waveform so that both the target range and the Doppler 

information can be measured unambiguously while maintaining a LPI [1].  The triangular 

modulation consists of two linear frequency modulation sections with positive and negative 

slopes. With this configuration, the range and Doppler frequency of the detected target can be 

extracted unambiguously by taking the sum and the difference of the two beat frequencies. 

With the objective to demonstrate the efficiency of the proposed signal processing, 

twelve different signals are analyzed. The most important parameters have been varied, such 

as modulation bandwidth, modulation period and SNR. Carrier frequency and sampling 

frequency were kept constant due to detecting carrier frequency doesn’t present any 

complexity. Table 18 shows the complete set of input signal to be analyzed. Only the 

analysis of one signal is presented in this thesis. The rest of the results are included in a 

technical report to be published. 

 

No File Name Carrier 

Frequency 

Sampling 

Frequency 

Mod. 

Bandwidth 

Mod.  Period SNR 

1 F 1 7 250 20 s 1000 7000 250 20 -

2 F 1 7 250 20 0 1000 7000 250 20 0

3 F 1 7 250 20 -6 1000 7000 250 20 -6

4 F 1 7 250 30 s 1000 7000 250 30 -

5 F 1 7 250 30 0 1000 7000 250 30 0

6 F 1 7 250 30 -6 1000 7000 250 30 -6

7 F 1 7 500 20 s 1000 7000 500 20 -

8 F 1 7 500 20 0 1000 7000 500 20 0

9 F 1 7 500 30 -6 1000 7000 500 20 -6

10 F 1 7 500 30 s 1000 7000 500 30 -

11 F 1 7 500 30 0 1000 7000 500 30 0

12 F 1 7 500 30 -6 1000 7000 500 30 -6
 

Table 17   Matrix of input signals for FMCW. 

 



108 

 

1. FMCW ∆F=500 Hz tm=20 ms signal only 
Table 18  shows the input data and the results for a triangular FMCW signal with 

modulation bandwidth of 500 MHz. The objective of this example is to introduce changes in 

the bandwidth of the input signal to observe the responses of the proposed signal processing. 

Figure 101 illustrates the PSD of the input signal. 

 

FMCW – Parameters Input Signal Obtained Comment 
Carrier frequency (Hz) 1000 1000  
Sampling frequency (Hz) 7000 7000 Given 
Modulation Bandwidth (Hz) 500 492.12  
SNR (dB) Signal only -  
Number of triangles 5 -  
Modulation Period (ms) 20 20  

 
Table 18   FMCW ∆F=500 Hz tm=20 ms signal only. 

 
 

 
Figure 101  FMCW ∆F=500 Hz tm=20 ms signal only PSD. 

 

 

 



109 

Figure 102 (a) represents the output of the parallel filter arrays. A perfect frequency-

time representation of the signal can be observed alone many other characteristics. Figure 

102  (b) shows the resulting plot after the third-order cumulant estimator. Although no noise 

is presented, other unwanted components of the signal are eliminated providing a clear 

representation of the signal.  The observed modulation bandwidth is between 492.12 Hz and 

546.8 Hz due to the error on the measurement is equal to the bandwidth of each sub-filter 

(54.68 Hz)  

 
(a) 

 
(b) 

 
Figure 102  FMCW ∆F=500 Hz tm=20 ms signal only (a) Output of the parallel filter arrays (b) Output 

after HOS.  



110 

Figure 103 shows a zoom in the resulting plot after HOS. Some parameters are 

estimated such as carrier frequency equal to 1 KHz, modulation bandwidth equal to 500 Hz 

and modulation period of 20 ms. Figure 104 Presents an amplitude-frequency view of the 

resulting plot after HOS, A concentration of frequency components around the carrier 

frequency and the bandwidth occupied by the signal can be seen. 

 

 
 

Figure 103  FMCW ∆F=500 Hz tm=20 ms signal only zoom in output of HOS. 

 

 
 

Figure 104  FMCW ∆F=500 Hz tm=20 ms signal only amplitude-frequency plot. 



111 

2. FMCW ∆F=500 Hz tm=20 ms SNR= 0 dB 

Table 19  shows the input and obtained data for a triangular FMCW signal with 

SNR= 0 dB. Figure 105 illustrates the PSD of the signal centered in a carrier frequency of 1 

KHz.  

 

FMCW - Parameters Input Signal Obtained Comment 
Carrier frequency (Hz) 1000 1000  
Sampling frequency (Hz) 7000 7000 Given 
Modulation Bandwidth (Hz) 500 492.12  
SNR (dB) 0 -  
Number of triangles 5 -  
Modulation Period (ms) 20 20  

 
Table 19   FMCW ∆F=500 Hz tm=20 ms SNR= 0 dB. 

 
 

 
 

Figure 105  FMCW ∆F=500 Hz tm=20 ms SNR= 0 dB  PSD. 

 

 



112 

Figure 106  (a) shows the output of the filter bank. Although a same level of noise 

and signal are presented, the plot presents a good frequency-time description of the signal. 

Figure 106  (b) shows the resulting plot after the third-order estimators. Most of the Gaussian 

noise has been eliminated and some inter-modulation products starts appearing at low-

frequency filters.    

 

(a) 

 

(b) 

Figure 106  FMCW ∆F=500 Hz tm=20 ms SNR= 0 dB (a) Output of the parallel filter arrays (b) Output 
after HOS. 

 



113 

Figure 107 shows a zoom in the resulting plot after applying HOS. Most of the 

parameters identify the signal can be measured. Figure 108 presents an amplitude-frequency 

view of the resulting plot.  

 

 
Figure 107  FMCW ∆F=500 Hz tm=20 ms SNR= 0 dB zoom in the resulting plot after HOS. 

 

 
 
 

Figure 108  FMCW ∆F=500 Hz tm=20 ms SNR= 0 dB amplitude-frequency plot. 

 



114 

3. Summary 

Figure 109 shows a summary chart of the performance of the parallel filter arrays and 

HOS to detect carrier frequency, modulation bandwidth and modulation period in the FMCW 

signals analyzed previously. This figure presents a comparison of the parameters in three 

different environments: signal only (blue), SNR=0 dB (red) and SNR=-6 dB (yellow). The 

percentage in the chart describes an average of how close is the extracted values from the 

theoretical values. 

After processing the signals, the plots provide very accurate values for carrier 

frequency, modulation bandwidth and modulation period in any environment analyzed.  The 

performance of the proposed signal processing has demonstrated being very efficient to 

detect triangular FMCW radar signals. 

 

FMCW Carrier freq.(Hz) Mod.Bandwidth (Hz) Mod.Period(ms) 
Signal only 100% 100% 100% 
0 dB 100% 100% 100% 
(-) 6 dB 100% 94% 100% 

 

10%

30%

50%

70%

90%

110%

130%

150%

Carrier freq.(Hz) Mod.Bandw idth (Hz) Mod.Period(ms)

Parameters

Pe
rc

en
ta

ge Only signal

0 dB

(-) 6 dB

 
Figure 109  Performance of the signal processing detecting FMCW signals. 

 

 



115 

D. FRANK POLYPHASE CODE 

Frank codes belong to the family of polyphase codes, Chirp codes and Barker codes, 

and have been successfully used in implementing LPI radar signals. A Frank-coded 

waveform consists of a constant amplitude signal whose carrier frequency is modulated by 

the phases of the Frank code. Each element of the code is τ seconds along, which is 

approximately equal to the reciprocal of the waveform 3-dB bandwidth. A Frank code has a 

length of N2, which is the result obtained from the multiplication of N frequency steps and N 

samples per frequency. 

To test the performance of the proposed signal processing, twelve different Frank-

coded signals were generated. Number of phases, code period and SNR were varied to cover 

different variations of the signal without noise and in very noisy environments as shown in 

Table 20  . This thesis presents the analysis of one test signal. Only the analysis of one signal 

is presented in this thesis. The rest of the results are included in a technical report to be 

published.  

No File Carrier 

Frequency 

Sampling 

Frequency 

N(Phases) Cycles/phase SNR 

1 FR_1_7_4_1_s 1000 7000 4 1 - 

2 FR_1_7_4_1_0 1000 7000 4 1 0 

3 FR_1_7_4_1_-6 1000 7000 4 1 -6 

4 FR_1_7_4_5_s 1000 7000 4 5 - 

5 FR_1_7_4_5_0 1000 7000 4 5 0 

6 FR_1_7_4_5_-6 1000 7000 4 5 -6 

7 FR_1_7_8_1_s 1000 7000 8 1 - 

8 FR_1_7_8_1_0 1000 7000 8 1 0 

9 FR_1_7_8_1_-6 1000 7000 8 1 -6 

10 FR_1_7_8_5_s 1000 7000 8 5 - 

11 FR_1_7_8_5_0 1000 7000 8 5 0 

12 FR_1_7_8_5_-6 1000 7000 8 5 -6 

 

Table 20    Matrix of input signals for Frank Polyphase Code.  



116 

 

1. Frank Code, N=16, cycles per phase =5 and signal only 
Table 21  describes a Frank-coded signal with carrier frequency equal to 1 KHz, 

sampling frequency equal to 7 KHz, 16 phases and 5 cycle per phase. Code Period and 

Bandwidth are calculated in Equations (4.1.6) and (4.1.7). In addition, Table 21   shows the 

results obtained by processing the signal with a parallel filter arrays and HOS. Figure 110 

illustrates the PSD of the input signal.  

  

Frank - Parameters Input Signal Obtained Comment 
Carrier frequency (Hz) 1000 1000  
Sampling frequency (Hz) 7000 7000 Given 
N - Phases 16   
SNR (dB) Signal only -  
Cycles per phase 5 -  
Bandwidth 200 218.72  
Code Period (ms) 80 80  

 
Table 21   Frank Code N=16 cycles per phase =5 signal only. 

 

The code period of the Frank-coded signal is 

2(Cycles/phase)(N ) (5)(16)= 80  ms
1000c

c

t
f

= =          (4.1.6) 

The bandwidth of the signal depends on the cycles per phase (or chirp) as 

  1000 Hz  200 Hz 
Cycles per phase 5 cycles per phase

cfB = = =        (4.1.7) 

 

 

 

 

 

 



117 

 

 
Figure 110  Frank Code N=16 cycles per phase =5 signal only PSD  

 

Figure 111  (a) presents the response of the parallel filter arrays after processing 

the input signal. This signal is divided in smaller frequencies, to show a complete 

frequency-time description of the signal. As said before, the bandwidth of each sub-filter 

is 54.68 Hz as a result of using 64 filters and sampling frequency equal to 7000 Hz. 

Figure 111  (b) shows the resulting plot after the third-order cumulant estimators are 

applied.  

 Figure 112 (a) makes a zoom in the resulting plot after HOS. This plot provides 

information about the carrier frequency, bandwidth and code period. All this data is recorded 

and compared with the input data in Table 21  .  Figure 112 (b) shows the phase shift of the 

signal.  

 

 

 



118 

 

 

 

 

(a) 

 

(b) 

Figure 111  Frank Code N=16 cycles per phase =5 signal only (a) Output of the parallel filter arrays  (b) 
Output after HOS.   



119 

 

 

 

 

(a) 

 

(b) 

Figure 112  Frank Code N=16 cycles per phase =5 signal only (a) Zoom in the resulting plot after HOS  
(b) Phase shift. 



120 

 

 

(a) 

 

(b) 

Figure 113  Frank Code N=16 cycles per phase =5 signal only (a) Amplitude-filter plot (b) Amplitude-
frequency plot. 

. 



121 

 

2. Frank Code, N=16, cycles per phase =5 and SNR=0 dB 
Table 22  describes a Frank-coded signal with carrier frequency equal to 1 KHz, 

sampling frequency equal to 7 KHz, 16 phases, 5 cycle per phase and SNR = 0 dB. Code 

Period and Bandwidth are calculated in Equations (4.1.8) and (4.1.9). In addition, Table 22  

shows the results obtained by processing the signal with a parallel filter arrays and HOS. 

Figure 114 illustrates the PSD of the input signal.  

  

Frank - Parameters Input Signal Obtained Comment 
Carrier frequency (Hz) 1000 1000  
Sampling frequency (Hz) 7000 7000 Given 
N - Phases 16   
SNR (dB) 0 -  
Cycles per phase 5 -  
Bandwidth 200 218.72  
Code Period (ms) 80 80  

 

Table 22   Frank Code N=16 cycles per phase =5 SNR=0 dB. 

 

The code period of the Frank-coded signal is 

 

2(Cycles/phase)(N ) (5)(16)= 80  ms
1000c

c

t
f

= =          (4.1.8) 

 

The bandwidth of the signal depends on the cycles per phase (or chirp) as 

 

  1000 Hz  200 Hz 
Cycles per phase 5 cycles per phase

cfB = = =      (4.1.9) 

 



122 

 
Figure 114  Frank Code N=16 cycles per phase =5 SNR=0 dB PSD. 

 

 

Figure 115 (a) presents the response of the parallel filter arrays after processing 

the input signal. This signal is divided in smaller frequencies, to show a complete 

frequency-time description of the signal. Figure 115  (b) shows the resulting plot after the 

third-order cumulant estimators are applied. Because the SNR in the input signal is 0 dB, 

this plot shows how the noise is eliminated, facilitating the extraction of the needed 

parameters to identified the signal.  

 Figure 116 (a) makes a zoom in the resulting plot after HOS. This plot provides 

information about the carrier frequency, bandwidth and code period. All this data is recorded 

and compared with the input data in Table 22  .  Figure 116 (b) shows the phase shift of the 

signal.  

 

 

 



123 

 

 

 

(a) 

 

(b) 

Figure 115  Frank Code N=16 cycles per phase =5 SNR=0 dB (a)  Output of the parallel filter arrays (b) 
Output after HOS. 

 

 



124 

 

 

 

(a) 

 

(b) 

Figure 116  Frank Code N=16 cycles per phase =5 SNR=0 dB (a) Zoom in resulting plot after HOS  (b) 
Phase shift: first 4 phases. 

 



125 

 

 

 

(a) 

 

(b) 

Figure 117  Frank Code N=16 cycles per phase =5 SNR=0 dB (a) Amplitude-filter plot (b) Amplitude-
frequency plot. 



126 

3. Summary 

Figure 118 shows a summary chart of the performance of the parallel filter arrays and 

HOS to detect carrier frequency, bandwidth, code period and number of phases in Frank-

coded signals analyzed previously. This figure presents a comparison of the parameters in 

three different environments: signal only (blue), SNR=0 dB (red) and SNR=-6 dB (yellow). 

The percentage in the chart describes an average of how close is the extracted values from 

the theoretical values. 

After processing the signals, the plots provide very accurate values for carrier 

frequency, bandwidth and code period in any environment analyzed with a low performance 

when SNR is less than –6 dB.  The number of phases can be only extracted when noise is not 

presented and a number of cycles per phase is greater than 5.  

 

FRANK CODE Carrier freq.(Hz) Bandwidth (Hz) Code period (ms) Phases 
Signal only 100% 105% 100% 100% 
0 dB 100% 103% 100% 0% 
(-) 6 dB 100% 52% 72% 0% 

10%

30%

50%

70%

90%

110%

130%

150%

Carrier freq.(Hz) Bandw idth (Hz) Code period (ms) Phases

Parameters

Pe
rc

en
ta

ge Only signal

0 dB

(-) 6 dB

 

Figure 118  Performance of the signal processing detecting Frank-coded signals. 
 



127 

E.  P1 POLYPHASE CODE 

The detection and classification of polyphased-coded signals is especially efficient 

with the use of parallel filter arrays and HOS. With the object of demonstrating this fact, a set 

of twelve different P1-coded signals was generated (Table 23  ). 

Three parameters were varied: number of phases, cycles per phase and SNR. As 

mention in Chapter II, P1-coded signal  N=4 produces a matrix of 16 different phases. In the 

same way, N=8 produces a matrix of 64 phases.  

In addition to the standard parameters previously provided, in the case of polyphased-

coded signals the number of phases can be detected. This is a very important factor when 

performing recognition of a unknown signal. Only the analysis of one signal is presented in 

this thesis. The rest of the results are included in a technical report to be published. 

    

No File Carrier 

Frequency 

Sampling 

Frequency 

N(Phases) Cycles/phase SNR 

1 P1_1_7_4_1_s 1000 7000 4 1 - 

2 P1_1_7_4_1_0 1000 7000 4 1 0 

3 P1_1_7_4_1_-6 1000 7000 4 1 -6 

4 P1_1_7_4_5_s 1000 7000 4 5 - 

5 P1_1_7_4_5_0 1000 7000 4 5 0 

6 P1_1_7_4_5_-6 1000 7000 4 5 -6 

7 P1_1_7_8_1_s 1000 7000 8 1 - 

8 P1_1_7_8_1_0 1000 7000 8 1 0 

9 P1_1_7_8_1_-6 1000 7000 8 1 -6 

10 P1_1_7_8_5_s 1000 7000 8 5 - 

11 P1_1_7_8_5_0 1000 7000 8 5 0 

12 P1_1_7_8_5_-6 1000 7000 8 5 -6 

 
Table 23   Matrix of input signals for P1. 

 

 



128 

1. P1 Code N=64 cycles per phase =5 signal only 

Table 24  shows the input values and the obtained parameters for a P1-coded signal. 

The calculation of the input values of code period and bandwidth is given by Equations 

(4.1.10) and (4.1.11). Figure 119  presents the PSD of the signal.  

 

P1 - Parameters Input Signal Obtained Comment 
Carrier frequency (Hz) 1000 1000  
Sampling frequency (Hz) 7000 7000 Given 
N – Phases 64 64  
SNR (dB) Signal only -  
Cycles per phase 5 -  
Bandwidth 200 218  
Code Period (ms) 320 320  
 

Table 24   P1 Code N =64 cycles per phase =5 signal only. 

 

The code period of the P1 signal is 

 

(Cycles/bit)( ) (5)(64)= 320  ms
1000c

c

Nt
f

= =         (4.1.10) 

 

The bandwidth of the signal depends on the cycles per phase (or chirp) as 

 

1000 Hz  200 Hz 
Cycles per phase 5 cycles per phase

cfB = = =         (4.1.11) 

 

 

 

 

 



129 

 
Figure 119  P1 Code N=64 cycles per phase =5 signal only PSD. 

 

 

The output of the filter bank is shown in Figure 120 (a). This figure presents a 

frequency-time description of the signal where can be identified the most important 

parameters. Figure 120 (b) shows the output after the third-order estimators are applied to 

each one of sub-filters. Although there is not no noise added to the signal, it facilitates the 

estimation of the parameters.  



130 

 
(a) 

 
(b) 

 
Figure 120  P1 Code N=64 cycles per phase =5 signal only (a) Output of the parallel filter arrays (b) 

Output after HOS. 

 

 



131 

Figure 121 (a) presents a zoom in the resulting plot after HOS. In this plot can be 

identified accurately carrier frequency, bandwidth and code period. Figure 121  (b) shows a 

zoom to recognize the phase shift in the signal. Eight phases can be observed; as a result, 64 

phases are contained in one code period of the signal. 

 

(a) 

 

(b) 

Figure 121  P1 Code N=64 cycles per phase =5 Signal only (a) Resulting plot after HOS showing 
parameters (b) First 8 phases from 16 in the signal.  

 



132 

2. P1 Code N=64 cycles per phase =5 SNR=0 dB 

A P1 coded signal is described in Table 25  . With the objective to demonstrate the 

performance of the proposed signal processing to detect P1 coded signal in noise. Code 

period and bandwidth are calculated by the Equations (4.1.12) and (4.1.13). Figure 122 

shows the PSD of the input signal.  

P1 – Parameters Input Signal Obtained Comment 
Carrier frequency (Hz) 1000 1000  
Sampling frequency (Hz) 7000 7000 Given 
N - Phases 64 64  
SNR (dB) 0 -  
Cycles per phase 5 -  
Bandwidth 200 218.75  
Code Period (ms) 320 320  
 

Table 25   P1 Code N=64 cycles per phase =5 SNR=0 dB 

The code period of the P1 signal is 

(Cycles/bit)( ) (5)(64)= 320  ms
1000c

c

Nt
f

= =         (4.1.12) 

The bandwidth of the signal depends on the cycles per phase (or chirp) as 

1000 Hz  200 Hz 
Cycles per phase 5 cycles per phase

cfB = = =         (4.1.13) 

 
Figure 122  P1 Code N=64 cycles per phase =5 SNR=0 dB PSD.   



133 

The output signal of the parallel filter arrays is presented in Figure 123 (a). This is a 

frequency-time description of the signal where general characteristics of the signal can be 

observed. For an accurate estimation of the code period and bandwidth, it is necessary to 

obtain the third-order estimator of each sub-filter to eliminated the Gaussian noise in the 

signal as shown in Figure 123  (b). 

 

(a) 

 

(b) 

Figure 123  P1 Code N=64 cycles per phase =5 SNR=0 dB (a) Output of the parallel filter arrays (b) 
output after HOS. 



134 

The estimation of the carrier frequency, bandwidth and code period can be achieved making 

a zoom in the resulting plot after HOS as shown in Figure 124  (a). All this values are 

recorded and compared in the previous table. Figure 124 (b) illustrates the first 8 phases from 

a total of 64 present in the signal.  

 

(a) 

 

(b) 

Figure 124  P1 Code N=64 cycles per phase =5 SNR=0 dB (a) Zoom in the resulting plot after HOS (b) 
First 8 of a total o 64 phases. 



135 

 

 

 

(a) 

 

(b) 

Figure 125  P1 Code N=64 cycles per phase =5 SNR=0 dB (a) Amplitude-filter plot  (b) Amplitude-
frequency plot. 

 

 



136 

3. Summary 

Figure 126 shows a summary chart of the performance of the parallel filter arrays and 

HOS to detect carrier frequency, bandwidth, code period and number of phases in P1-coded 

signals analyzed previously. This figure presents a comparison of the parameters in three 

different environments: signal only (blue), SNR=0 dB (red) and SNR=-6 dB (yellow). The 

percentage in the chart describes an average of how close is the extracted values from the 

theoretical values. 

After processing the signals, the plots provide very accurate values for carrier 

frequency, bandwidth and code period in any environment analyzed with a lower 

performance when SNR is less than –6 dB.  The number of phases can be only extracted 

when noise is not presented and a number of cycles per phase is greater than 5.  

 

P1 Carrier freq.(Hz) Bandwidth (Hz) Code period (ms) Phases 
Signal only 100% 107% 100% 100% 

0 dB 100% 105% 100% 0% 
(-) 6 dB 100% 121% 59% 0% 

 

10%

30%

50%

70%

90%

110%

130%

150%

Carrier freq.(Hz) Bandw idth (Hz) Code period (ms) Phases

Parameters

Pe
rc

en
ta

ge Only signal

0 dB

(-) 6 dB

 
Figure 126  Performance of the signal processing detecting P1-coded signals. 

 



137 

F. P2 POLYPHASE CODE 

This code is essentially derived in the same way as the P1 code. The P2 code has the 

same phase increments within each group as the P1 code, except that the starting phase is 

different.  This code has the frequency symmetry of the P1 code while also containing the 

property of having phases symmetric in the center of the code. The P2 polyphase code, as 

well as the P1, has more of a symmetrical spectrum than a Frank-coded signal due to its 

symmetry in the carrier. 

A set of 12 different signals was generated to demonstrate the effectiveness of the 

parallel filter arrays and HOS on the detection of this polyphase-coded signal. This signals 

are show in Table 26  . Only the analysis of one signal is presented in this thesis. The rest of 

the results are included in a technical report to be published. 

 

No File Carrier 

Frequency 

Sampling 

Frequency 

N(Phases) Cycles/phase SNR 

1 P2_1_7_4_1_s 1000 7000 4 1 - 

2 P2_1_7_4_1_0 1000 7000 4 1 0 

3 P2_1_7_4_1_-6 1000 7000 4 1 -6 

4 P2_1_7_4_5_s 1000 7000 4 5 - 

5 P2_1_7_4_5_0 1000 7000 4 5 0 

6 P2_1_7_4_5_-6 1000 7000 4 5 -6 

7 P2_1_7_8_1_s 1000 7000 8 1 - 

8 P2_1_7_8_1_0 1000 7000 8 1 0 

9 P2_1_7_8_1_-6 1000 7000 8 1 -6 

10 P2_1_7_8_5_s 1000 7000 8 5 - 

11 P2_1_7_8_5_0 1000 7000 8 5 0 

12 P2_1_7_8_5_-6 1000 7000 8 5 -6 

 
Table 26   Matrix of test signals for P2 polyphase code.  

 

 



138 

 

1. P2 Code, N=16, cycles per phase =5 and signal only 
Table 27  shows a P2-coded signal with carrier frequency equal to 1000 Hz, sampling 

frequency equal to 7000 Hz, 16 phases and 5 cycles per phase. Code period and bandwidth 

are calculated by the Equations (4.1.14) and (4.1.15). Figure 127  (a) shows the PSD of the 

input signal illustrating the distribution of the power along the different frequencies 

contained in the signal. Figure 127 (b) presents a portion of the time-domain plot. 

 

P2 – Parameters Input Signal Obtained Comment 
Carrier frequency (Hz) 1000 1000  
Sampling frequency (Hz) 7000 7000 Given 
N – Phases 16 16  
SNR (dB) Signal only -  
Cycles per phase 5 -  
Bandwidth 200 218.75  
Code Period (ms) 80 80  

 

Table 27   P2 Code N=16 cycles per phase =5 signal only. 

 

The code period of the P2 signal is 

(Cycles/bit)( ) (5)(16)= 80  ms
1000c

c

Nt
f

= =          (4.1.14) 

The bandwidth of the signal depends on the cycles per phase (or chirp) as 

1000 Hz  200 Hz 
Cycles per phase 5 cycles per phase

cfB = = =         (4.1.15) 

 

  

 



139 

 
Figure 127  P2 Code N=16 cycles per phase =5 Signal only PSD.  

 

The response of the parallel filter arrays is illustrated in Figure 128 (a). This figure 

provides a time-frequency description and representation of the signal. The signal is 

decomposes the input signal into sub-band signals with narrow frequency bands. As said in 

Chapter 3, the filter bank can be interpreted as a matrix LxT, where L represents the number 

of filters and T time. In this case, 64 filters forms the parallel filter arrays and 0.8 seconds of 

the signal are analyzed.     

Figure 128 (b) shows the output signal after third-order cumulant estimators are 

applied to each sub-band signal. Figure 129 (a) and (b) shows a zoom in the previous plot. 

Carrier frequency, bandwidth, code period and numer of phases are measured, and the results 

are compared with the input parameters in the previous table. 

Figure 130 provides an amplitude-frequency representation of the resulting signal. 

The plot is very useful to confirm parameters, such as carrier frequency and bandwidth. 

  



140 

 
 

(a) 

 

(b) 

Figure 128  P2 Code N=16 cycles per phase =5 signal only (a) output of the parallel filter arrays (b) 
output after HOS. 

 



141 

 

(a) 

 

(b) 

Figure 129  P2 Code N=16 cycles per phase =5 signal only (a) zoom in previous plot (b) ) Plot showing 4 
phases of 16. 



142 

 

(b) 

Figure 130  P2 Code N=16 cycles per phase =5 signal only, amplitude-frequency plot.  

 

2. P2 Code, N=16, cycles per phase =5 and SNR= 0 dB 
Table 28  shows a P2-coded signal with carrier frequency equal to 1000 Hz, sampling 

frequency equal to 7000 Hz, 16 phases and 5 cycles per phase. Code period and bandwidth 

are calculated by the Equations (4.1.16) and (4.1.17). Figure 131 shows the PSD of the input 

signal illustrating the distribution of the power along the different frequencies contained in 

the signal.  

 

P2 – Parameters Input Signal Obtained Comment 
Carrier frequency (Hz) 1000 1000  
Sampling frequency (Hz) 7000 7000 Given 
N – Phases 16 16  
SNR (dB) 0 -  
Cycles per phase 5 -  
Bandwidth 200 218.75  
Code Period (ms) 80 80  

 

Table 28   P2 Code N=16 cycles per phase =5 SNR= 0 dB. 

 



143 

The code period of the P2 signal is 

 

(Cycles/bit)( ) (5)(16)= 80  ms
1000c

c

Nt
f

= =          (4.1.16) 

 

The bandwidth of the signal depends on the cycles per phase (or chirp) as 

 

1000 Hz  200 Hz 
Cycles per phase 5 cycles per phase

cfB = = =         (4.1.17) 

 

 

 

 

 

Figure 131  P2 Code N=16 cycles per phase =5 SNR= 0 dB  PSD. 

 

 



144 

Figure 133 shows the response of the parallel filter arrays. This figure provides a 

time-frequency description and representation of the signal. The signal is decomposes the 

input signal into sub-band signals with narrow frequency bands.  

Figure 135 illustrates the output signal after third-order cumulant estimators are 

applied to each sub-band signal to suppress the noise. This plot presents the performance of 

the HOS to eliminate white Gaussian noise and extract enough information for the 

recognition of the signal. Figure 134 shows a zoom in the previous plot. Carrier frequency, 

bandwidth, and code period are measured and the results are compared with the input 

parameters in the previous table. Additionally,  Figure 135 shows four phases in one of the 

frequencies. Four groups of four phases can be detected totalizing 16 phases in each period of 

the signal. 

Figure 136 provides an amplitude-frequency representation of the resulting signal. 

These plots are very useful to confirm parameters, such as carrier frequency and bandwidth. 

 
Figure 132  P2 Code N=16 cycles per phase =5 SNR= 0 dB output of the parallel filter arrays   



145 

 

 

Figure 133  P2 Code N=16 cycles per phase =5 SNR= 0 dB output after HOS. 

 

 

 

Figure 134  P2 Code N=16 cycles per phase =5 SNR= 0 dB zoom in the resulting plot after HOS. 



146 

 

 

Figure 135  P2 Code N=16 cycles per phase =5 SNR= 0 dB plot showing 4 phases of 16. 

 

 

(b) 

Figure 136  P2 Code N=16 cycles per phase =5 SNR= 0, amplitude-frequency plot. 

 



147 

3. Summary 

Figure 137 shows a summary chart of the performance of the parallel filter arrays and 

HOS to detect carrier frequency, bandwidth, code period and number of phases in P2-coded 

signals analyzed previously. This figure presents a comparison of the parameters in three 

different environments: signal only (blue), SNR=0 dB (red) and SNR=-6 dB (yellow). The 

percentage in the chart describes an average of how close is the extracted values from the 

theoretical values. 

After processing the signals, the plots provide very accurate values for carrier 

frequency, bandwidth and code period in any environment analyzed with a lower 

performance when SNR is less than –6 dB.  The number of phases can be only extracted 

when noise is not presented and a number of cycles per phase is greater than 5.  

 

P2 Carrier freq.(Hz) Bandwidth (Hz) Code period (ms) Phases 
Signal only 100% 100% 100% 100% 

0 dB 100% 100% 100% 0% 
(-) 6 dB 100% 121% 97% 0% 

 

10%

30%

50%

70%

90%

110%

130%

150%

Carrier freq.(Hz) Bandw idth (Hz) Code period (ms) Phases

Parameters

Pe
rc

en
ta

ge Only signal

0 dB

(-) 6 dB

 

Figure 137  Performance of the signal processing detecting P2-coded signals. 

 



148 

G. P3 POLYPHASE CODE 

Chapter 2 describes in the characteristics of P3 polyphase codes. The P3 code only 

differs from Frank code by 180 degrees phase shifts every N1/2 code elements (one frequency 

group) and by added phase increments that repeat every N1/2 samples (every frequency 

group). The P3 polyphase codes, as well as P4 codes, have tolerance to Doppler by the lack 

of grating side lobes. The performance of a parallel filter arrays and HOS to detect P3-coded 

signals is evaluated in this section.  

Twelve different P3-coded test signals were generated varying the number of phases, 

the number of cycles per phase and SNR as shown in Table 29  . Input parameters, 

calculation and results are presented and compared in tables. Plots describe the input signals 

and provide a graphical representation of the results. Only the analysis of one signal is 

presented in this thesis. The rest of the results are included in a technical report to be 

published. 

    

No File Carrier 

Frequency 

Sampling 

Frequency 

N(Phases) Cycles/phase SNR 

1 P3_1_7_16_1_s 1000 7000 4 1 - 

2 P3_1_7_16_1_0 1000 7000 4 1 0 

3 P3_1_7_16_1_-6 1000 7000 4 1 -6 

4 P3_1_7_16_5_s 1000 7000 4 5 - 

5 P3_1_7_16_5_0 1000 7000 4 5 0 

6 P3_1_7_16_5_-6 1000 7000 4 5 -6 

7 P3_1_7_64_1_s 1000 7000 8 1 - 

8 P3_1_7_64_1_0 1000 7000 8 1 0 

9 P3_1_7_64_1_-6 1000 7000 8 1 -6 

10 P3_1_7_64_5_s 1000 7000 8 5 - 

11 P3_1_7_64_5_0 1000 7000 8 5 0 

12 P3_1_7_64_5_-6 1000 7000 8 5 -6 

 
Table 29   Matrix of test signals for P3 Polyphase code. 

 



149 

 

1. P3 Code, N=64, cycles per phase =1 and signal only 
Table 30  shows a P3-coded signal with carrier frequency equal to 1000 Hz, sampling 

frequency equal to 7000 Hz, 64 phases and  1 cycles per phase. Code period and bandwidth 

are calculated by the Equations (4.1.18) and (4.1.19). Figure 138 (a) shows the PSD of the 

input signal, illustrating the distribution of the power along the different frequencies 

contained in the signal. Figure 138 (a) illustrates the phase shift for a P3-coded signal with 

N=64 and showing the symmetry at the center frequency. 

 

P3 – Parameters Input Signal Obtained Comment 
Carrier frequency (Hz) 1000 1000  
Sampling frequency (Hz) 7000 7000 Given 
N – Phases 64 64  
SNR (dB) Signal only -  
Cycles per phase 1 1  
Bandwidth 1000 1039  
Code Period (ms) 64 64  
 

Table 30   P3 Code N=64 cycles per phase =1 signal only. 

 

 The code period of the P3 signal is 

(Cycles/bit)( ) (1)(64)= 64  ms
1000c

c

Nt
f

= =    (4.1.18) 

The bandwidth of the signal depends on the cycles per phase (or chirp) as 

1000 Hz  1000 Hz 
Cycles per phase 1 cycles per phase

cfB = = =       (4.1.19) 

 



150 

 
Figure 138  P3 Code N=64 cycles per phase =1 signal only PSD. 

 

 

The response of the parallel filter arrays is illustrated in Figure 139 (a). Similarly as in 

previous analysis, this filter bank separates the input signal in smaller sub-bands, providing a 

time-frequency description of the signal. Additionally, this figure shows the symmetry of the 

phase shifts at the center frequency.   

A third-order cumulant estimator is applied to each one of the filters and the output 

signal is shown in Figure 139  (b). The resulting signal doesn’t suffer a dramatic change due 

to the nonexistence of noise added to this test signal. A zoom in this plot is presented in 

Figure 140 (a), where carrier frequency, bandwidth and code period are measured and 

compared with the input values in the previous table. 

In addition, Figure 140  (b) presents an amplitude-frequency plot confirming some of 

the previous measurements.  

 

 



151 

 

 

 

(a) 

 

(b) 

Figure 139  P3 Code N=64 cycles per phase =1 signal only (a) Output of the parallel filter arrays (b) 
Output after HOS. 

 



152 

 

 

(a) 

 

(b) 

Figure 140  P3 Code N=64 cycles per phase =1 signal only (a) zoom in the resulting signal after HOS (b) 
Amplitude-frequency plot.    

 

 



153 

2. P3 Code, N=64, cycles per phase =1 and SNR=0 dB 

Table 31  shows a P3-coded signal with carrier frequency equal to 1000 Hz, sampling 

frequency equal to 7000 Hz, 64 phases, 1 cycles per phase and SNR = 0 dB. Code period and 

bandwidth are calculated by the Equations (4.1.20) and (4.1.21). Figure 141 shows the PSD 

of the input signal, illustrating the distribution of the power along the different frequencies 

contained in the signal.  

 

P3 – Parameters Input Signal Obtained Comment 
Carrier frequency (Hz) 1000 1000  
Sampling frequency (Hz) 7000 7000 Given 
N – Phases 64 -  
SNR (dB) 0 -  
Cycles per phase 1 1  
Bandwidth 1000 1039  
Code Period (ms) 64 64  
 

Table 31   P3 Code N=64 cycles per phase =1 SNR=0 dB. 

 

 The code period of the P3 signal is 

 

(Cycles/bit)( ) (1)(64)= 64  ms
1000c

c

Nt
f

= =    (4.1.20) 

 

The bandwidth of the signal depends on the cycles per phase (or chirp) as 

 

1000 Hz  1000 Hz 
Cycles per phase 1 cycles per phase

cfB = = =       (4.1.21) 

 

 

 

 



154 

 
Figure 141  P3 Code N=64 cycles per phase =1 SNR=0 dB  PSD. 

 

The performance of the method based in filter bank and HOS is tested in this example 

where the SNR = 0 dB. Figure 142 (a) shows the response of the parallel filter arrays for the 

P3-coded signal described above. The signal is decomposed into subband signals with 

narrow frequency bands. The structure of the parallel filter arrays can be interpreted as a 

matrix LxT where L is the number of sub-filter and T is time. Even though SNR= 0 dB, this 

filter bank provides a clear frequency-time description of the input signal. Once the signal is 

separated into small sub-band signals, a third-order cumulant estimator is applied to each one 

of the sub-band signals. Figure 142  (b) illustrates the resulting signal after HOS, where the 

white Gaussian noise was suppressed. Because of some inter-modulation products, low-

frequency signals appear in the plots. With SNR = 0 dB, the introduced noise doesn’t 

interfere with the detection problem. 

Figure 143 (a) shows a zoom in the resulting signal after HOS. Carrier frequency, 

bandwidth and code period are measured and compared in the previous table. Figure 143  (b) 

provides an amplitude-frequency view of the resulting signal.  

 



155 

 

 

(a) 

 

(b) 

Figure 142  P3 Code N=64 cycles per phase =1 SNR=0 dB (a) Output of the parallel filter arrays (b) 
Output after HOS. 
 
 
 
 



156 

 

(a) 

 

(b) 

Figure 143  P3 Code N=64 cycles per phase =1 SNR=0 dB (a) Zoom in the resulting plot after HOS (b) 
Amplitude-frequency plot. 

 

 

 



157 

3. Summary 

Figure 144 shows a summary chart of the performance of the parallel filter arrays and 

HOS to detect carrier frequency, bandwidth, code period and number of phases in P3-coded 

signals analyzed previously. This figure presents a comparison of the parameters in three 

different environments: signal only (blue), SNR=0 dB (red) and SNR=-6 dB (yellow). The 

percentage in the chart describes an average of how close is the extracted values from the 

theoretical values. 

After processing the signals, the plots provide very accurate values for carrier 

frequency, bandwidth and code period in any environment analyzed with a lower 

performance when SNR is less than –6 dB.  The number of phases can be only extracted 

when noise is not presented and a number of cycles per phase is greater than 5.  

 

P3 Carrier freq.(Hz) Bandwidth (Hz) Code period (ms) Phases 
Signal only 100% 100% 100% 100% 

0 dB 100% 100% 100% 0% 
(-) 6 dB 100% 103% 97% 0% 

 

10%

30%

50%

70%

90%

110%

130%

150%

Carrier freq.(Hz) Bandw idth (Hz) Code period (ms) Phases

Parameters

Pe
rc

en
ta

ge Only signal

0 dB

(-) 6 dB

 

Figure 144  Performance of the signal processing detecting P3-coded signals. 

 



158 

H. P4 POLYPHASE CODE 

The P4 code is conceptually derived from the same waveform as P3 code. P4 code 

consists of the discrete phases of the linear chirp waveform taken at specific time intervals 

and exhibits the same range Doppler coupling associated with the chirp waveform. However, 

the peak sidelobe levels are lower than those of the unweighted chirp waveform. 

The effectiveness of the proposed method on the detection and identification of 

unknown P4-coded signals is proven in this section. Twelve different P4-coded test signals 

were generated varying the number of phases, the number of cycles per phase and SNR as 

shown in Table 32  .  

Input parameters, calculation and results are presented and compared in tables. Plots 

describe the input signals and provide a graphical representation of the results. Only the 

analysis of one signal is presented in this thesis. The rest of the results are included in a 

technical report to be published. 

    

No File Carrier 

Frequency 

Sampling 

Frequency 

N(Phases) Cycles/phase SNR 

1 P4_1_7_16_1_s 1000 7000 4 1 - 

2 P4_1_7_16_1_0 1000 7000 4 1 0 

3 P4_1_7_16_1_-6 1000 7000 4 1 -6 

4 P4_1_7_16_5_s 1000 7000 4 5 - 

5 P4_1_7_16_5_0 1000 7000 4 5 0 

6 P4_1_7_16_5_-6 1000 7000 4 5 -6 

7 P4_1_7_64_1_s 1000 7000 8 1 - 

8 P4_1_7_64_1_0 1000 7000 8 1 0 

9 P4_1_7_64_1_-6 1000 7000 8 1 -6 

10 P4_1_7_64_5_s 1000 7000 8 5 - 

11 P4_1_7_64_5_0 1000 7000 8 5 0 

12 P4_1_7_64_5_-6 1000 7000 8 5 -6 

 
Table 32   Matrix of test signals for P4 Polyphase code. 



159 

 

1. P4 Code, N=64, cycles per phase =5 and signal only 
Table 33  shows a P4-coded signal with carrier frequency equal to 1000 Hz, sampling 

frequency equal to 7000 Hz, 64 phases and  5 cycles per phase. Code period and bandwidth 

are calculated by the Equations (4.1.22) and (4.1.23). Figure 145 (a) shows the PSD of the 

input signal, illustrating the distribution of the power along the different frequencies 

contained in the signal. Figure 145  (b) illustrates the phase shifts for a P4-coded signal with 

N=64. 

 

P4 – Parameters Input Signal Obtained Comment 
Carrier frequency (Hz) 1000 1000  
Sampling frequency (Hz) 7000 7000 Given 
N – Phases 64 64  
SNR (dB) Signal only -  
Cycles per phase 5 5  
Bandwidth 200 218.75  
Code Period (ms) 320 320  
 

Table 33   P4 Code N=64 cycles per phase =5 signal only. 

 

 The code period of the P4 signal is 

(Cycles/bit)( ) (5)(64)= 320  ms
1000c

c

Nt
f

= =    (4.1.22) 

The bandwidth of the signal depends on the cycles per phase (or chirp) as 

1000 Hz  200 Hz 
Cycles per phase 2 cycles per phase

cfB = = =       (4.1.23) 

 

 

 

 



160 

 
Figure 145  P4 Code N=64 cycles per phase =5 signal only  PSD. 

 

The response of the parallel filter arrays is illustrated in Figure 146 (a) .As in previous 

analysis; this filter bank separates the input signal in smaller sub-bands, providing a time-

frequency description of the signal. Additionally, this figure shows the symmetry of the 

phase shifts at the center frequency.  

A third-order cumulant estimator is applied to each one of the filters and the output 

signal is shown in Figure 146  (b). The resulting signal doesn’t suffer a dramatic change due 

to the absence of noise added to this test signal. A zoom in this plot is presented in Figure 

147 (a), where carrier frequency, bandwidth and code period are measured and compared 

with the input values in the previous table. 

Moreover, Figure 147  (b) presents an amplitude-frequency plot confirming some of 

the previous measurements.  

 

 

 



161 

 

(a) 

 

(b) 

Figure 146  P4 Code N=64 cycles per phase =5 signal only (a) Output of the parallel filter arrays (b) 
Output after HOS. 

 

 



162 

 

(a) 

 

(b) 

Figure 147  P4 Code N=64 cycles per phase =5 signal only (a) Zoom in the resulting signal after HOS (b) 
Amplitude-frequency plot.    

 

 

 



163 

2. P4 Code, N=64, cycles per phase =5 and SNR=0 dB 

Table 34  shows a P4-coded signal with carrier frequency equal to 1000 Hz, sampling 

frequency equal to 7000 Hz, 64 phases, 5 cycles per phase and SNR = 0 dB. Code period and 

bandwidth are calculated by the Equations (4.1.22) and (4.1.23). Figure 148 shows the PSD 

of the input signal, illustrating the distribution of the power along the different frequencies 

contained in the signal.  

 

P4 – Parameters Input Signal Obtained Comment 
Carrier frequency (Hz) 1000 1000  
Sampling frequency (Hz) 7000 7000 Given 
N – Phases 64 -  
SNR (dB) 0 -  
Cycles per phase 5 5  
Bandwidth 200 218.75  
Code Period (ms) 320 320  
 

Table 34   P4 Code N=64 cycles per phase =5 SNR=0 dB. 

 

 
Figure 148  P4 Code N=64 cycles per phase =5 SNR=0 dB PSD. 

 

 



164 

The response of the parallel filter arrays for the P4-coded signal described above is 

presented in Figure 149 . Although SNR= 0 dB, this filter bank provides a clear frequency-

time description of the input signal. Once the signal is separated into small sub-band signals, 

a third-order cumulant estimator is applied to each one of the sub-band signals. Figure 150  

(a) illustrates the resulting signal after HOS, where the white Gaussian noise was suppressed. 

Because of some inter-modulation products, low-frequency signals become visible in the 

plots. With SNR = 0 dB, the introduced noise doesn’t interfere in the detection problem. 

Figure 150  (b) shows a zoom in the resulting signal after HOS. Carrier frequency, 

bandwidth and code period are measured and compared in the previous table.   Figure 151  

provides amplitude-filter and amplitude-frequency views of the resulting signal.  

 

 

 

 

Figure 149  P4 Code N=64 cycles per phase =5 SNR=0 dB output of the parallel filter arrays.  
 
 



165 

 

(a) 

 

(b) 

Figure 150  P4 Code N=64 cycles per phase =5 SNR=0 dB (a) Plot after HOS (b) Zoom in the resulting 
plot after HOS.  

 



166 

 

(a) 

 

(b) 

 

Figure 151  P4 Code N=64 cycles per phase =5 SNR=0 dB (a) Amplitude-filter plot  (b) Amplitude-
frequency plot. 

 
 
 
. 



167 

3. Summary 

Figure 152 shows a summary chart of the performance of the parallel filter arrays and 

HOS to detect carrier frequency, bandwidth, code period and number of phases in P4-coded 

signals analyzed previously. This figure presents a comparison of the parameters in three 

different environments: signal only (blue), SNR=0 dB (red) and SNR=-6 dB (yellow). The 

percentage in the chart describes an average of how close is the extracted values from the 

theoretical values. 

After processing the signals, the plots provide very accurate values for carrier 

frequency, bandwidth and code period in any environment analyzed with a lower 

performance when SNR is less than –6 dB.  The number of phases can be only extracted 

when noise is not presented and a number of cycles per phase is greater than 5.  

 

P4 Carrier freq.(Hz) Bandwidth (Hz) Code period (ms) Phases 
Signal only 100% 100% 100% 100% 
0 dB 100% 100% 100% 0% 
(-) 6 dB 100% 103% 97% 0% 

 

10%

30%

50%

70%

90%

110%

130%

150%

Carrier freq.(Hz) Bandw idth (Hz) Code period (ms) Phases

Parameters

Pe
rc

en
ta

ge Only signal

0 dB

(-) 6 dB

 

Figure 152  Performance of the signal processing detecting P4-coded signals. 

 



168 

I. COSTAS CODE 

Chapter II describes the characteristics of LPI signals modulated by Costas Code. In 

this frequency hopping system, the signal consists of one or more frequencies being chosen 

from a set {f1, f2, …, fm} of available frequencies,  for transmission at each of a set  {t1, t2, …, 

tn} of consecutives time intervals. For this simulation, a set of twelve different Costas-coded 

signals was generated considering the situation in which m=n, and a different one of n 

equally spaced frequencies {f1, f2, …, fn} is transmitted during each of the n equal duration 

time intervals {t1, t2, …, tn}. Table 35  show the matrix of Costas-coded signals were two 

different Costas sequences were used. Additionally, cycles per phase and SNR were varied to 

evaluate the performance of the proposed signal processing. Only the analysis of one signal 

is presented in this thesis. The rest of the results are included in a technical report to be 

published. 

    

No File Carrier 

Frequency 

(Hz) 

Sampling 

Frequency 

(Hz) 

Transmission time in each 

frequency (ms) 

SNR 

(dB) 

1 C_1_15_10_s 1000 15000 10 - 

2 C_1_15_10_0 1000 15000 10 0 

3 C_1_15_10_-6 1000 15000 10 -6 

4 C_1_15_20_s 1000 15000 20 - 

5 C_1_15_20_0 1000 15000 20 0 

6 C_1_15_20_-6 1000 15000 20 -6 

7 C_2_15_10_s 1000 15000 10 - 

8 C_2_15_10_0 1000 15000 10 0 

9 C_2_15_10_-6 1000 15000 10 -6 

10 C_2_15_20_s 1000 15000 20 - 

11 C_2_15_20_0 1000 15000 20 0 

12 C_2_15_20_-6 1000 15000 20 -6 

 
Table 35   Matrix of test signals for Costas code. 

 



169 

 

1. Costas code, sequence 1, time in frequency 10 ms, signal only 
Table 36  describes a Costas-coded signal with a Costas sequence of 7 frequencies, 

sampling frequency equal to 15000 Hz and transmission time in each frequency equal to 10 

ms.  The PSD of the signal is presented in Figure 153 This figure shows the distribution of 

the power in the frequencies related to the Costas sequence 4-7-1-6-5-2-3, where each of this 

numbers represents frequencies in KHz. Additionally; the figure illustrates the total 

bandwidth of the signal, which is about 6000 Hz.   

 

Costas– Parameters Input Signal Obtained Comment 
Costas Sequence (KHz) 4-7-1-6-5-2-3 4-7-1-6-5-2-3  
Sampling frequency (Hz) 15000 15000 Given 
SNR (dB) Signal only -  
Transmission time per frequency (ms) 10 10  
Code period (ms) 70 70  
Bandwidth (Hz) 6000 6014.8  

 
Table 36   Costas code, sequence 1, time in frequency 10 ms, signal only. 

 

 
Figure 153  Costas code, sequence 1, time in frequency 10 ms, signal only PSD. 

 



170 

Figure 154 shows the output signal after the parallel filter arrays. This plot presents a 

frequency-time description of the signal where the Costas sequence of frequencies can be 

identified. The bandwidth of each sub-filter is directly proportional to the sampling 

frequency fs and inversely proportional to twice the number of filters L in the array 

15000Bandwidth 117.68
2 2*64

sf
L

= = =  

 
 

Figure 154  Costas code, sequence 1, time in frequency 10 ms, signal only Output of the parallel filter 
arrays. 

 

Figure 155 (a) illustrates the output signal after third-order cumulant estimators are 

applied to each one of the sub-filters. Noise is not added to the signal; therefore, the result of 

the HOS is just a degradation of the previous signal.   Figure 155 (b) presents a zoom in the 

output after HOS. The Costas sequence, bandwidth and code period are measured and 

compared in the previous table. 

In addition, Figure 156 provides an amplitude-frequency view of the resulting signal 

after HOS. All the frequency in the Costas code and the total bandwidth is confirmed with 

the obtained data.      

 

 



171 

 

(a) 

 

(b) 

Figure 155  Costas code, sequence 1, time in frequency 10 ms, signal only (a) Output after HOS (b) Zoom 
in plot after HOS showing parameters. 

 

 



172 

 
Figure 156  Costas code, sequence 1, time in frequency 10 ms, signal only amplitude-frequency plot 

 
 
 
 
2. Costas code, sequence 1, time in frequency 10 ms, SNR=0 dB 
Table 37  describes a Costas-coded signal with a Costas sequence of 7 frequencies, 

sampling frequency equal to 15000 Hz, transmission time in each frequency equal to 10 ms 

and SNR = 0 dB.  The PSD of the signal is presented in Figure 157 .This figure shows the 

distribution of the power in the frequencies related to the Costas sequence 4-7-1-6-5-2-3, 

where each of this numbers represents frequencies in KHz. In addition; the figure illustrates 

the total bandwidth of the signal, which is about 6000 Hz. 

   

Costas– Parameters Input Signal Obtained Comment 
Costas Sequence (KHz) 4-7-1-6-5-2-3 4-7-1-6-5-2-3  
Sampling frequency (Hz) 15000 15000 Given 
SNR (dB) 0  -  
Transmission time per frequency (ms) 10 10  
Code period (ms) 70 70  
Bandwidth (Hz) 6000 6014.8  

 
Table 37   Costas code, sequence 1, time in frequency 10 ms, SNR=0 dB. 

 



173 

 
Figure 157  Costas code, sequence 1, time in frequency 10 ms, SNR=0 dB PSD. 

 

Figure 158 shows the response of the filter bank. The input signal was decomposed 

into small sub-band signals to provide a frequency-time representation. The bandwidth of 

each sub-filter is kept constant through the evaluation of Costas-coded signal as a result of 

keeping the number of filters and sampling frequency constant. 

 

 
 

Figure 158  Costas code, sequence 1, time in frequency 10 ms, SNR=0 dB Output of the parallel filter 
arrays. 



174 

Figure 159 (a) shows the output signal after applying third-order cumulant estimators 

to each of the sub-filters. Even though the SNR = 0 dB, all the characteristics of the signal 

can be extracted form the plot. Figure 159 (b) provides a zoom in the previous plot where all 

the parameters are measured and compared in the previous table. An amplitude-frequency 

plot of the resulting signal is provided in Figure 160 .  

 

 

(a) 

 

(b) 

Figure 159  Costas code, sequence 1, time in frequency 10 ms, SNR=0 dB (a) Output after HOS   (b) 
Zoom in the resulting signal after HOS. 



175 

 
Figure 160  Costas code, sequence 1, time in frequency 10 ms, SNR=0 dB amplitude-frequency plot. 

 



176 

3. Summary 

Figure 161 shows a summary chart of the performance of the parallel filter arrays and 

HOS to detect carrier frequency, bandwidth, and code period in Costas-coded signals 

analyzed previously. This figure presents a comparison of the parameters in three different 

environments: signal only (blue), SNR=0 dB (red) and SNR=-6 dB (yellow). The percentage 

in the chart describes an average of how close is the extracted values from the theoretical 

values. 

After processing the signals, the plots provide very accurate values for carrier 

frequency, bandwidth and code period in any environment analyzed.  

 

COSTAS Sequence time in frequency(ms) Code period (ms) 
Signal only 100% 100% 100% 

0 dB 100% 100% 100% 
(-) 6 dB 100% 100% 100% 

10%

30%

50%

70%

90%

110%

130%

150%

Sequence time in frequency(ms) Code period (ms)

Parameters

Pe
rc

en
ta

ge Only signal

0 dB

(-) 6 dB

 

 

Figure 161  Performance of the signal processing detecting Costas-coded signals. 

 

 



177 

J. FSK/PSK COMBINED WITH COSTAS CODE 

As mentioned in Chapter II, this modulation technique is the result of a combination 

of frequency shift keying based on a Costas frequency hopping matrix and phase shift keying 

using Barker sequences of different lengths. In a Costas frequency hopped signal, the firing 

order defines what frequencies will appear and with what duration. During each sub-period, 

as the signal stays in one of the frequencies, a binary phase modulation occurs according to a 

Barker. The final waveform may be seen as a binary phase shifting modulation within each 

frequency hop, resulting in 25 phase slots equally distributed in each frequency.  

With the purpose of testing the signal processing based on the use of parallel filter 

arrays and HOS, eight signals are generated and analyzed (Table 38  ). This section describes 

the input signal in detail through the PSD, a time domain representation and the PAF.  Then, 

the input signal is evaluated with the proposed signal processing. The input parameters and 

results are compared in tables. Signals with SNR= -6 dB are not analyzed in this section 

because of the proposed method is unable to detect and identify these particular signals. Only 

the analysis of one signal is presented in this thesis. The rest of the results are included in a 

technical report to be published. 

  

No File Fs (Hz)   No of Barker Bits Cycles per bit SNR (dB) 

1 FSK_PSK_C_1_15_5_1_s 15000 5 1 - 

2 FSK_PSK_C_1_15_5_1_0 15000 5 1 0 

3 FSK_PSK_C_1_15_5_5_s 15000 5 5 - 

4 FSK_PSK_C_1_15_5_5_0 15000 5 5 0 

5 FSK_PSK_C_1_15_11_1_s 15000 11 1 - 

6 FSK_PSK_C_1_15_11_1_0 15000 11 1 0 

7 FSK_PSK_C_1_15_11_5_s 15000 11 5 - 

8 FSK_PSK_C_1_15_11_5_0 15000 11 5 0 

 

Table 38   Matrix of test signals for FSK/PSK Costas code. 

 

 



178 

 

1. FSK/PSK costas, bits in code =5, cycle per bit =1, signal only 
Table 39  describes a FSK/PSK Costas-coded signal with a Costas sequence of 7 

frequencies, sampling frequency equal to 15000 Hz, 5- bit Barker code and 1 cycles per bit.  

The PSD of the signal is presented in Figure 162 . This figure shows the distribution of the 

power in the frequency domain; in addition, the figure illustrates the total bandwidth of the 

signal. 

 

FSK/PSK Costas– Parameters Input Signal Obtained Comment 
Costas Sequence (KHz) 4-7-1-6-5-2-3 4-7-1-6-5-2-3  
Sampling frequency (Hz) 15000 15000 Given 
Number of bits per Barker code 5 5  
Cycles per Barker bit 1 1  
Bandwidth (Hz) 7000 7053  

 
Table 39   FSK/PSK costas, bits in code =5, cycle per bit =1, signal only. 

 

The bandwidth in each one of the carry frequencies used is kept constant; therefore, 

the number of cycle per bit must vary as shown in Equations 4.1.28 and 4.1.30. As a 

consequence of keeping the same bandwidth for each frequency, the code period and the time 

spent by the signal in each frequency is constant as demonstrated in 4.1.29 and 4.1.31. For 

example the bandwidth for the signal with carrier frequency 1 KHz is 

1
1000 Hz  1000 Hz 

Cycles per phase 1 cycles per phase
c

KHz
fB = = =   (4.1.24) 

and the code period is 

    (Cycles/bit)(No of bits) (1)(5)= 5  ms
1000c

c

t
f

= =    (4.1.25) 

The bandwidth for the signal with carrier frequency 7 KHz is 

7
7000 Hz  1000 Hz 

Cycles per phase 7 cycles per phase
c

KHz
fB = = =   (4.1.26) 

and the code period is  



179 

 (Cycles/bit)(No of bits) (7)(5)= 5  ms
7000c

c

t
f

= =    (4.1.27) 

 

 
Figure 162  FSK/PSK Costas, bits in code =5, cycle per bit =1, signal only PSD. 

 

 

The response of the parallel filter arrays is presented in Figure 163 . The input signal 

is decomposed into small sub-band signals. The resolution of the filter bank depends on the 

bandwidth of each sub-filter. The bandwidth of each sub-filter is calculated by fs/(2L) where 

fs represents the sampling frequency and L the number of filters in the array. In this case the 

minimum resolution of the array is 117.18 Hz. This figure provides a good time-frequency 

representation where a general behavior of the signal can be identified. 

 

 

 

 



180 

 

 
 

Figure 163  FSK/PSK Costas, bits in code =5, cycle per bit =1, signal only output of the parallel filter 
arrays.     

 

 

Figure 164 shows the resulting signal after a third-order cumulant estimator is applied 

to each one of the sub-band signals after the parallel filter arrays. Due to the signal lacks of 

noise, the resulting signal is not very different from the previous signal. An important 

improvement will be noticed when the noise is many time greater than the signal. 

Figure 165 zooms in the previous plot and shows the Costas sequence followed by the 

signal during one period.  Figure 166 reveals many characteristics of the signal. Carrier 

frequency, bandwidth of the signal for each frequency, code period and the time spent by the 

signal in each frequency is recorded and compared with the input values. 

 

 



181 

 

 

Figure 164  FSK/PSK Costas, bits in code =5, cycle per bit =1, signal only output after HOS. 

 

 

 

Figure 165  FSK/PSK Costas, bits in code =5, cycle per bit =1, signal only Zoom in the previous figure 
showing the Costas sequence. 

 



182 

 

 
 

Figure 166  FSK/PSK Costas, bits in code =5, cycle per bit =1, signal only Zoom in the previous figure 
showing parameters. 

 

 
 

Figure 167  FSK/PSK Costas, bits in code =5, cycle per bit =1, signal only amplitude-frequency plot of 
the resulting signal. 



183 

 

2. FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB 
Table 40  describes a FSK/PSK Costas-coded signal with a Costas sequence of 7 

frequencies, sampling frequency equal to 15000 Hz, 5-bit Barker code, 1 cycles per bit and 

SNR= 0 dB.  The PSD of the signal is presented in Figure 168 . This figure shows the 

distribution of the power in the frequencies; in addition, the figure illustrates the total 

bandwidth of the signal. 

 

FSK/PSK Costas– Parameters Input Signal Obtained Comment 
Costas Sequence (KHz) 4-7-1-6-5-2-3 4-7-1-6-5-2-3  
Sampling frequency (Hz) 15000 15000 Given 
Number of bits per Barker code 5 5  
Cycles per Barker bit 1 1  
Bandwidth (Hz) 7000 7053  
SNR (dB) 0 0  

 
Table 40   FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB. 

 

 
Figure 168  FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB PSD. 
 

 

 



184 

The response of the parallel filter arrays is presented in Figure 169 . The input signal 

is decomposed into small sub-band signals. This figure provides a good time-frequency 

representation where a general behavior of the signal can be identified. 

 

 

 
 

Figure 169  FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB Output of the parallel filter 
bank. 
 

 

Figure 170 shows the resulting signal after a third-order cumulant estimator is applied 

to each one of the sub-band signals after the parallel filter arrays. Figure 171 zooms in the 

previous plot and shows the Costas sequence followed by the signal during one period.  

Figure 172 reveals many characteristics of the signal. Carrier frequency, bandwidth of the 

signal for each frequency, code period and the time spent by the signal in each frequency is 

recorded and compared with the input values.  Figure 173 shows an amplitude-frequency plot 

of the resulting signal after HOS. 

 

 



185 

 
 

Figure 170  FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB output after HOS. 

 

 
 

Figure 171  FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB zoom in the previous plot after 
HOS. 

 

 



186 

 
Figure 172  FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB zoom in previous plot showing 

parameters. 

 

 

 
Figure 173  FSK/PSK Costas, bits in code =5, cycle per bit =1, SNR=0 dB Amplitude-frequency plot 

after HOS. 

 

 



187 

3. Summary 

Figure 174 shows a summary chart of the performance of the parallel filter arrays and 

HOS to detect carrier frequency, bandwidth and code period in FSK/PSK Costas-coded 

signals analyzed previously. This figure presents a comparison of the parameters in three 

different environments: signal only (blue), SNR=0 dB (red) and SNR=-6 dB (yellow). The 

percentage in the chart describes an average of how close is the extracted values from the 

theoretical values. 

After processing the signals, the plots provide very precise values for carrier 

frequency, bandwidth and code period in any environment analyzed except for SNR lower 

than 0 dB where none of the parameters can be extracted.  

 

FSK/PSK COSTAS Sequence Bandwidth (Hz) Code period (ms) 
Signal only 100% 100% 100% 
0 dB 100% 100% 100% 

 

10%

30%

50%

70%

90%

110%

130%

150%

Sequence Bandw idth (Hz) Code period (ms)

Parameters

Pe
rc

en
ta

ge Only signal

0 dB

 
Figure 174  Performance of the signal processing detecting Costas-coded signals. 

 

 



188 

K.  FSK/PSK TARGET 

Chapter II describes the generation of FSK/PSK Target signals in detail. Instead of 

spreading the energy of the signal equally over a broad bandwidth, this type of technique 

concentrates the signal energy in specific spectral locations of most importance for the radar 

and its typical targets, within the broad-spectrum bandwidth. The produced signals have a 

pulse compression characteristic and therefore they can achieve LPI. 

Eight signals are considered for the evaluation of the proposed signal processing 

detecting FSK/PSK Target signals. This thesis shows the analysis of one test signal. The 

analysis of the complete test signal matrix is included in the Technical Report. Signals with 

SNR= -6 dB are not analyzed in this section because of the method is unable to detect and 

identify these particular signals.  

  

 

No File Fs (Hz)   No of phases Cycles per phase SNR (dB) 

1 FSK_PSK_T_15_128_5_s 15000 128 5 - 

2 FSK_PSK_T_15_128_5_0 15000 128 5 0 

3 FSK_PSK_T_15_128_10_s 15000 128 10 - 

4 FSK_PSK_T_15_128_10_0 15000 128 10 0 

5 FSK_PSK_T_15_256_5_s 15000 256 5 - 

6 FSK_PSK_T_15_256_5_0 15000 256 5 0 

7 FSK_PSK_T_15_256_10_s 15000 256 10 - 

8 FSK_PSK_T_15_256_10_0 15000 256 10 0 

 

Table 41    Test signal matrix for  FSK/PSK Target. 

 

 

 

 



189 

 

1. FSK/PSK Target, phases =128, cycle per phase =5, signal only 
Table 42  describes a FSK/PSK target signal with sampling frequency 15 KHz, 5 

different phases and 128 random frequencies. The PSD of the signal is shown in  Figure 175 . 

This plot presents the distribution of the power along different frequency components of the 

signal. As a result of the target response there is a concentration of the power between 3 KHZ 

and 6 KHz. Within this interval there are 128 frequencies generated randomly from  the 

originals 64 frequencies (Figure 176 ). The signal frequencies are assumed to be uniformly 

distributed over the bandwidth. 

 

FSK/PSK Target– Parameters Input Signal Obtained Comment 
Sampling frequency 15000 15000 Given 
Number of phases 5 -  
Number of frequencies 64 -  
Random Hops 128 -  
Bandwidth (Hz) 3000 4500  
SNR Signal only -  

 
Table 42   FSK/PSK Target, phases =128, cycle per phase =5, signal only. 

  

 
Figure 175  FSK/PSK Target, phases =128, cycle per phase =5, signal only PSD. 

 



190 

 

 
Figure 176  FSK/PSK Target, phases =128, cycle per phase =5, signal only,  number of occurrences.  

 

Figure 177 presents the response of the parallel filter arrays, and Figure 178 shows 

the resulting signal after third-order cumulants estimators are applied to each sub-band 

frequency. There is not a significant difference between these two figures due to the lack of 

noise in the input signal.  In addition, the power is mostly concentrated between 3 KHz and 6 

KHz as expected.  

As a result of the particularly efficient LPI characteristics of this modulation, there is 

not much information that can be extracted from the plots in addition to the bandwidth and 

the concentration of the power in frequency. The random presentation of frequencies in the 

signal gives the impression of containing only noise.  

 



191 

 
Figure 177  FSK/PSK Target, phases =128, cycle per phase =5, signal only Output of the parallel filter 

arrays. 

 

 

 
 

Figure 178  FSK/PSK Target, phases =128, cycle per phase =5, signal only output after HOS. 

  

 



192 

 

 

 
Figure 179  FSK/PSK Target, phases =128, cycle per phase =5, signal only amplitude-frequency plot 

after HOS. 

 

 

 

 

 

 

 

 

 

 

 



193 

 

2. FSK/PSK Target, phases =128, cycle per phase =5, SNR=0 dB 
Table 43  describes a FSK/PSK target signal with sampling frequency 15 KHz, 5 

different phases, 128 random frequencies and SNR = 0 dB. The PSD of the signal is shown 

in Figure 180 . This plot presents the distribution of the power along different frequency 

components of the signal. As a result of the target response there is a concentration of the 

power between 3 KHZ and 6 KHz.  

 

FSK/PSK Target– Parameters Input Signal Obtained Comment 
Sampling frequency 15000 15000 Given 
Number of phases 5 -  
Number of frequencies 64 -  
Random Hops 128 -  
Bandwidth (Hz) 3000 3000  
SNR 0 -  

 
Table 43   FSK/PSK Target, phases =128, cycle per phase =5, SNR=0 dB. 

  

 
Figure 180  FSK/PSK Target, phases =128, cycle per phase =5, SNR=0 dB. 

 

 



194 

 

Figure 181 shows the output of the parallel filter arrays. The input signal is separated 

into small sub-band signals. Figure 182 presents the resulting signal after HOS. Although 

most of the white Gaussian noise is suppressed by the third-order cumulant estimators, the 

signal appears very noisy. The frequencies are completely distributed along the whole 

bandwidth.  This behavior can be confirmed in the Amplitude-frequency plot in Figure 183 , 

where the complete spectrum is occupied by frequencies. 

 

 

 
 

Figure 181  FSK/PSK Target, phases =128, cycle per phase =5, SNR=0 dB output of the parallel filter 
arrays. 

 

 

 

 



195 

 
Figure 182  FSK/PSK Target, phases =128, cycle per phase =5, SNR=0 dB output of HOS. 

 

 
Figure 183  FSK/PSK Target, phases =128, cycle per phase =5, SNR=0 dB amplitude-frequency plot. 

 

 



196 

3. Summary 

Figure 184 shows a summary chart of the performance of the parallel filter arrays and 

HOS to detect carrier frequency, bandwidth and code period in FSK/PSK target signals 

analyzed previously. This figure presents a comparison of the parameters in three different 

environments: signal only (blue), SNR=0 dB (red) and SNR=-6 dB (yellow). The percentage 

in the chart describes an average of how close is the extracted values from the theoretical 

values. 

After processing the signals, the plots provide imprecise values for carrier frequency, 

bandwidth and code period in any environment analyzed.  

 

FSK/PSK TARGET Sequence Bandwidth (Hz) Code period (ms) 
Signal only 0% 108% 0% 
0 dB 0% 88% 0% 

 

10%

30%

50%

70%

90%

110%

130%

150%

Sequence Bandw idth (Hz) Code period (ms)

Parameters

Pe
rc

en
ta

ge Only signal

0 dB

 
Figure 184  Performance of the signal processing detecting FSK/PSK target signals. 

 

 



197 

L. COMPARISON OF DIFFERENT POLYPHASE-CODED SIGNALS 

 

The objective of comparing different polyphased-coded signals is to demonstrate the 

effectiveness of the proposed signal processing to discriminate among different polyphase 

modulations. One signal per each modulation was selected, having the same carrier 

frequency (1 KHz)), sampling frequency (7 KHz), number of phases (16) and cycles per 

phase (5).  The results are presented in figures and tables. The most important deviation 

among the signal is related to the phase shift. The increment between phases produces 

diverse performance in  the modulations, facilitating an accurate identification of each 

polyphase modulation.    

Table 44  shows each one of the analyzed signals and their most important 

characteristics. In addition, this table presents the resulting phases for the generation of 16 

phases (N=4 or N=16). The resulting figures after HOS is provided along with the phase shift 

plots. The analysis of these plots reveals a close relationship where the conduct of the phases 

approximate to the frequency-time description of the signal. 

      

Signal Phase shift values Comment 

Frank 0         0            0             0 
0    1.5708    3.1416    4.7124 
0    3.1416    6.2832    9.4248 
0    4.7124    9.4248   14.1372  

Phase changes between adjacent 
codes are the smallest.  

P1        0       -3.1416    6.2832   28.2743 
-2.3562   -3.9270    7.0686   30.6305 
-4.7124   -4.7124    7.8540   32.9867 
-7.0686   -5.4978    8.6394   

Lowest code increments from 
one code element to code 
element in the center of the 
waveform 

P2  3.5343    1.1781   -1.1781   -3.5343 
 1.1781    0.3927   -0.3927   -1.1781 
-1.1781   -0.3927    0.3927    1.1781 
-3.5343   -1.1781    1.1781    3.5343   

Symmetric at center frequency 

P3       0      0.0123   0.0491    0.1104      0.1963  0.3068  
0.4418    0.6013  0.7854  0.9940  1.2272    1.4849  
1.7671  2.0739   2.4053   2.7612   (one row) 

Largest code element to code 
element are on middle of the P3 
code 

P4       0         -2.9452   -5.4978   -7.6576   - 9.4248  -10.7992  
-11.7810 -12.3700  -12.5664 -12.3700  -11.7810  -10.7992  
 -9.4248   -7.6576    -5.4978    -2.9452  (one row) 

Largest code element to code 
element are on the two ends of 
the P4 code 

 
Table 44   Different Polyphase-coded signals and differences for N=16. 

 



198 

1. Frank Code 

The actual Frank-coded signal consists of a carrier (1 KHz), the place of which is 

modulated according to the indicated baseband waveform sequence. For each frequency or 

section of the step chirp, a phase group consisting of N phase samples is obtained and the 

total number of code phases is N. Note that the phase increments within the four phase 

groups are 0˚, 90˚, 180˚, and 270˚. However, the phases of the last group are ambiguous 

(>180˚) and appear as -90˚ phase steps. The last phase group, because of the ambiguity, 

appears to complete one 360˚. (Figure 185 )  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 185  Frank-coded signal: Resulting plot after HOS and phase shift. 

 



199 

 

2. P1 
This code has the lowest code increments from one code element to code element in 

the center of the waveform as shown in Figure 186 .  For a odd number of N, the resulting 

phases are the same as the Frank code except the phase groups are rearranged.  For N even, 

P1 codes has the same phase increments, within each phase group, as the P2 except the 

starting phases are different. 

 

 
 

 

 

  

 

 

 

 

 

 

 

 

 
Figure 186  P1-coded signal: Resulting plot after HOS and phase shift. 



200 

 

3. P2 
This code is valid for even numbers of phases, and each group of the code is 

symmetric about zero phase as shown in Figure 187 . 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 187  P2-coded signal: Resulting plot after HOS and phase shift. 

 



201 

 

4. P3 
P3 only differs from Frank code by 180˚  phase shifts every N1/2 code elements (one 

frequency group) and by added phase increments that repeats every N1/2 samples (every 

frequency group).  The largest phase increments from code element to code element are in 

the middle of the P3 code as presented in Figure 188 .   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 188   P3-coded signal: Resulting plot after HOS and phase shift. 



202 

 

5. P4 
P4 code is very similar to P1 code except that the phase samples are those of a sampled 

chirped waveform rather than step-chirp waveform. It is noted that the largest phase 

increment s from code element are on the two ends of the P4 code. Figure 189 describes the 

resulting signal and its phase shift. 

 

  

 

 

 

 

 

 

 

 

 

 
Figure 189  P4-coded signal: Resulting plot after HOS and phase shift. 



203 

M. SUMMARY OF EFFECTIVENESS 

This section presents a summary of the effectiveness of parallel filter arrays and HOS 

to detect and extract different parameters from unknown signals for each one of the analyzed 

modulations. The capability to detect the signal and extract values of parameters is shown in 

Figure 190 using different colors. Green represents detection with a deviation no greater than 

± 10 % from the calculated values; yellow shows detection with a deviation between 10% 

and 50%, and red represents those measurements whose values exceed 50% from the original 

values. 

This method has demonstrated being highly efficient to detect and extract parameters 

from unknown LPI signals for FMCW, polyphased-coded signals, Costas signals and 

FSK/PSK Costas signals. The performance is very low on the detection of FSK/PSK Target 

where the only parameter detected is the bandwidth.   

 

M
od

ul
at

io
n 

C
ar

ri
er

 fr
eq

ue
nc

y 

Se
qu

en
ce

 

B
an

dw
id

th
/M

od
ul

at
io

n 
B

an
dw

id
th

 

C
od

e/
M

od
ul

at
io

n 
pe

ri
od

 

C
od

e 

Ph
as

es
 

BPSK   

FMCW   

FRANK   

P1   

P2   

P3   

P4   

COSTAS   

FSK/PSK/COSTAS   

FSK/PSK TARGET   

 

Figure 190  Effectiveness on detection for different parameters in each modulation, showing accurate 
detection (green), poor detection (yellow) and no detection (red). 

 



204 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



205 

V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 
In this document, a proposed signal processing is presented for the detection of LPI 

radar signals based on the use of a parallel filter arrays and higher order cumulants. This 

scheme can be related to a time-frequency domain detection method. The detection can be 

performed without knowing any of the characteristics of the input signal.  

The parallel array of filters can approximate the behavior of a matched filter. The  

purpose of this filter bank is to separate the observed signal into frequency bands. An 

increment in the number of filters in bank also increases the resolution of the system. The 

implementation of HOS, particularly third-order cumulant estimators, shows the potential of 

the method to suppress white Gaussian noise. The detection method also indicates that the 

third-order cumulant of a signal grows out the third-order cumulant of the noise with 

increasing SNR.  

The efficiency of the proposed method varies with the modulation used in the LPI 

radar signal. This signal processing demonstrated high efficiency detecting and identifying  

al the parameters for BPSK and FMCW signals. The detection and identification of 

Polyphase-coded signal is satisfactory,  even though some of the parameters cannot 

completely be distinguished. This method also exhibits a good discrimination among 

different polyphase-coded signals as Frank, P1, P2, P3 and P4.  

As verified, this technique alone is not sufficient to process the multiplicity of 

available LPI waveforms, but the combined use of this technique with others, such as Wigner 

distribution, Cyclostationary processing, and Quadrature mirror filtering will provide the 

expected response. 

 

B. RECOMMENDATIONS 
The MATLAB® code implementing the  parallel filter bank and HOS takes a 

considerable amount of time to produce a result, due to the multiple number of loops in the 

program. In the future, a more efficient algorithm must be implemented to improve the 

response time.  



206 

One more stage could be created for the automatic recognition of the most important 

parameters and the modulation of LPI signals. Neural Networks have been used exhaustively 

in pattern recognition and classification and it seems to be a good approach for feature 

extraction and an accurate classification of LPI signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



207 

APPENDIX A. LPI SIGNAL GENERATOR MAIN PROGRAM AND 
SUB-PROGRAMS 

%****************************************************************************** 
% LPIG.m 
% 
% Use:  This program is the user interface of the LPI signal generator 
% 
% Inputs:       Type of LPI signal 
% 
%Output:        In-phase (I) and Quadarture (Q) components of the signal 
%               Plots 
% 
%January 18, 2002 
%Maj Fernando Taboada - Venezuelan Army 
%****************************************************************************** 
clc; 
clear; 
clear all; close all 
disp('******************************************************'); 
disp('*************PROGRAM TO GENERATE LPI SIGNALS*************'); 
disp('*********************************************************'); 
disp(' ') 
disp(' ') 
disp('') 
disp('CHOOSE A TYPE OF CODE TO BE GENERATED:') 
disp('1.  BPSK') 
disp('2.  FMCW') 
disp('3.  FRANK CODE') 
disp('4.  POLYPHASE CODE P1') 
disp('5.  POLYPHASE CODE P2') 
disp('6.  POLYPHASE CODE P3') 
disp('7.  POLYPHASE CODE P4') 
disp('8.  COSTAS CODE') 
disp('9.  FSK/PSK COSTAS') 
disp('10. FSK/PSK TARGET') 
disp('11. TEST SIGNAL') 
disp(' ') 
ch=input('Enter a number (1-11): '); 
    switch ch 
        case 1    
            bpsk;          
        case 2   
            fmcw;        
        case 3 
            frank;              
        case 4 
            p1; 
        case 5    
            p2;          
        case 6   
            p3;        
        case 7 



208 

            p4;             
        case 8 
            costas; 
        case 9    
            fsk_psk_costas;           
        case 10   
            fsk_psk_target;        
        case 11 
            test_signal; 
        end 
              
disp(' ') 
disp(' ') 
disp('Do you want to generate other LPI signal ? ') 
disp(' ') 
disp('1. Generate a different LPI') 
disp('2. Quit') 
again=input('Choose 1 or 2 = '); 
switch again 
    case 1 
       LPIG; 
   otherwise 
       beep; 
       disp('Thanks for using the LPI generator');          
    end 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



209 

 
%****************************************************************************** 
% bpsk.m 
% 
% Use:  Code to generated BPSK signals 
% 
% Inputs:       Amplitud of the carrier signal 
%          Carrier signal frequency - f (Hz) 
%               Sampling frequency - fs (HZ) 
%               Desired SNR in dB 
%               Number of bits per Barker code 
%               Number of code periods 
%               Number of cycles per Barker bit 
%               Number of periods to view on graphs (CW signal) 
% 
%Output:        In-phase (I) and Quadarture (Q) components of the signal 
%               Plots 
% 
%January 17, 2002 
%Maj Fernando Taboada - Venezuelan Army 
%****************************************************************************** 
 
 
clc;clear all; 
disp('************************************'); 
disp('**************** BPSK *****************'); 
disp('***************************************'); 
 
% DEFAULT VARIABLES  
A  = 1;              %Amplitud of the carrier signal 
f    = 1e3;             %Carrier signal frequency - f (Hz) 
fs = 7e3;                           %Sampling frequency - fs (Hz) 
SNRdb  = 0;          %Desired SNR in dB 
barker = 7;                         %Number of bits per Barker code 
np   = 175;          %Number of code periods 
NPBB = 5;          %Number of cycles per Barker bit 
NPV  = 55;             %Number of periods to view on graphs (CW signal) 
   
% NEW INPUT  
newvar = 1; 
while newvar == 1; 
    disp(' ') 
    disp('WHICH PARAMETER DO YOU WANT TO SET ?  ') 
    disp(' ') 
    fprintf('1. Amplitude of the carrier signal - (A)= %g.\n', A) 
    fprintf('2. Carrier frequency - f (Hz) = %g.\n', f) 
    fprintf('3. Sampling frequency - fs (Hz)= %g.\n', fs) 
    fprintf('4. Signal to noise ratio - SNRdb (dB)= %g.\n', SNRdb) 
    fprintf('5. Number of bits per Barker code - barker (13/11/7)= %g.\n', barker) 
    fprintf('6. Number of code periods- np= %g.\n', np) 
    fprintf('7. Number of cycles per Barker bit - NPBB= %g.\n',NPBB) 
    fprintf('8. Number of code periods to view on graphs= %g.\n', NPV) 
    fprintf('9. No changes\n') 
    disp(' ') 
    option= input('Select a option: '); 
    



210 

    switch option 
    case 1    
        A=input('New amplitude of carrier signal (Volts) = ');        
    case 2 
        f=input('New carrier signal frequency (Hz) = ');       
    case 3 
        fs=input('New sampling frequency (Hz) = ');    
    case 4 
        SNRdb=input('New signal to Noise Ratio (dB) = ');         
    case 5 
        barker=input('New number of bits for Barker Code = ');       
    case 6 
        np=input('New number of periods of carrier signal to generate = ');  
    case 7         
        NPBB=input('New number of CW periods per Barker bit = ');       
    case 8 
        NPV=input('New number of periods to view on graphs = '); 
    case 9 
        newvar = 0; 
    end 
     clc; 
end 
 
%  Variables below are calculated based upon the above user defined variables 
ti = 1/(f*100);                %determine suitable time increment to plot carrier signal 
t  = 0:ti:np/f;                   %set up time vector 
xt = A*sin(2*pi*f.*t);             %representation of carrier signal(continuous) 
 
SAR=floor(fs/f); 
n  = 0:1:SAR*np;       %sample vector n, covers np periods of carrier frequency 
 
xnT  = A*cos(2*pi.*n*f/fs);     %create vector of sampled function, for I 
xnT2 = A*sin(2*pi.*n*f/fs);   %create shifted version of function, for Q 
 
 
%************ 
% This section creates the modulating signal and modulates the carrier 
%************ 
fm = f/NPBB;            %set frequency of modulating signal 
pw = floor(fs/fm);      %determine # of samples (of n) per 
Barker bit 
 
%create sequence of the (7, 11 or 13)-bit Barker code with pw samples of each bit, 
%string several sequences end to end to match length of sampled signal 
 
if barker==13 
    brk = [ones(1,pw*5),-(ones(1,pw*2)),ones(1,pw*2),-ones(1,pw),ones(1,pw),-ones(1,pw),ones(1,pw)];%13 bit 
elseif barker==11 
    brk = [ones(1,pw*3),-(ones(1,pw*3)),ones(1,pw),-ones(1,pw),-ones(1,pw),ones(1,pw),-ones(1,pw)];% 11 bit 
else 
    brk = [ones(1,pw*3),-(ones(1,pw*2)),ones(1,pw),-ones(1,pw)];% 7 bits 
end 
 
brkseq = [];                 %initialize brkseq to hold a sequence of brk 
ns = floor(length(n)/(pw*barker)); %integer number of complete 13-bit Barker sequences 
 



211 

for step = 1:1:ns;                %create multiple n-bit Barker sequence vector 
   brkseq = [brkseq,brk]; 
end 
 
%************ 
% Here is where the modulation is done and the I and Q channels created 
%************ 
 
I   = xnT(1:barker*ns*pw).*brkseq;       %modulate sampled carrier with Barker sequence, I 
Q   = xnT2(1:barker*ns*pw).*brkseq;     %modulate shifted function with Barker sequence, Q 
rl  = length(I);                      %get length of the new vector 
 
%****************** 
% In this section we create White Gaussian Noise (WGN) and add it to both the  
% I and the Q channels.  In the original program the noise was developed using  
% the normrnd MATLAB function. To standarize noise for all the programs, we 
%use the wgn MATLAB function. 
%****************** 
 
[a,b]=size(xnT); 
SNR=10^(SNRdb/10); 
power=10*log10(A^2./(2*SNR));%calculate SNR in dB for WGN function 
noise=wgn(a,b,power); %calculate noise at specified SNR 
IwN =I+noise(1:length(I));             %add noise to I  
QwN=Q+noise(1:length(Q));           %add noise to Q  
 xnTwN = xnT + noise;     %add WGN to sampled signal, for reference 
only 
 
%Generation of plots  
disp(' ') 
plt = input('Do you want to generate plots of the signal (Y/y or N/n) ?','s'); 
disp(' ') 
if (plt == 'Y') | (plt =='y') 
    disp(' ') 
       %************************* 
        % Plot a CW representation of the signal and a sampled version of the signal 
        %************************* 
        figure(1); 
        %plot carrier frequency (CW) and sampled function 
        subplot(2,1,1);    %CW representation 
         
        if ( np > NPV );    %just show some of the data to keep screen uncluttered 
            plot(t(1:1:100*NPV),xt(1:1:100*NPV));grid; 
            axis([0 0.012 -A*1.5 A*1.5]); 
            title(['Continuous Wave Signal, f = ',num2str(f),', #periods= ',num2str(np),', ',num2str(NPV),' shown']); 
        else 
            plot(t,xt); grid;   %plot carrier frequency as continuous function 
 
            title(['Continuous Wave Signal, f = ',num2str(f),', #periods= ',num2str(np)]); 
        end 
 
        xlabel('Time (sec)'),ylabel('Amplitude'); 
 
 
        subplot(2,1,2);    %show sampled version of carrier signal 
 



212 

        if ( np > NPV )    %keep display uncluttered 
            stem(n(1:1:SAR*NPV),xnT(1:1:SAR*NPV));grid;%plot sampled carrier frequency (portion of) 
            axis([1 SAR*NPV -A*1.5 A*1.5]); 
            title(['Sampled signal, fs = ',num2str(fs),', #periods= ',num2str(np),', ',num2str(NPV),' shown']); 
        else 
            stem (n,xnT);grid;    %plot sampled carrier frequency 
            title(['Sampled signal, fs = ',num2str(fs),', #periods= ',num2str(np)]); 
        end 
 
        xlabel('n (sample #)'),ylabel('x[n]'); 
        title(['Sampled signal, fs = ',num2str(fs),', #periods= ',num2str(np)]);   
         
        %*********************** 
        %Plot Modulating signal and PSD 
        %*********************** 
        figure(2);        
        subplot(2,1,1);     %show modulating signal, distinguishing 
between bits 
        set (gca,'YLim',[1.2*min(brk) 1.2*max(brk)]);%force y axis limits to better see signal 
        xlabel('n (sample #)'),ylabel('Amplitude'); 
        if ( np > NPV )     %limit displayed amount 
            flag = 1;      %flag tracks bit changes to change display 
    
            for step=1:pw:SAR*NPV   %step through each Barker bit 
                if ( flag == 1 )   %change plotting for each bit 
                    hold on,plot(n(step:1:step+pw-1),brkseq(step:1:step+pw-1));grid; 
                else 
                    hold on,plot(n(step:1:step+pw-1),brkseq(step:1:step+pw-1),'x');grid 
                end 
       
            flag = -flag;    %swap flag 
            end 
            step=ceil(step/pw);   %determine # of bits displayed 
            title([num2str(barker),'-bit Barker Sequence',' # periods shown = ' num2str(step/barker)]); 
        else 
            hold on, plot(n(1:rl),brkseq(1:rl),'x');grid;%plot the modulating signal 
            title([num2str(barker),'-bit Barker Sequence']); 
        end 
        subplot(2,1,2); %show Power Spectral Density of the modulating signal 
        psd(brkseq,[],fs); 
        title(['Power Spectral Density of the', num2str(barker),'-bit Barker Sequence', ' # samples = 
',num2str(length(brkseq))]); 
 
        %************************  
        %Plot the sampled signal and the Barker sequence in subplot 1, then show the  
        % results after modulation in subplot 2 
        %************************ 
        figure(3);      
        subplot(2,1,1);    
 
        if ( np > NPV )     %show only as much as the user asked for 
            stem(n(1:1:SAR*NPV),xnT(1:1:SAR*NPV)); 
            axis([0 SAR*NPV -A*1.5 A*1.5]); 
            hold on, plot(n(1:1:SAR*NPV),brkseq(1:1:SAR*NPV),'r--');%modulating signal in red 
        else 



213 

            stem(n(1:rl),xnT(1:rl));      %plot the sampled carrier 
signal 
            axis([0 SAR*NPV -A*1.5 A*1.5]); 
            hold on, plot(n(1:rl),brkseq(1:rl),'r--');%plot the modulating signal in red 
        end 
 
        xlabel('n (sample #)'),ylabel('Amplitude'); 
        title([num2str(barker),'-bit Barker Sequence Overlayed on Sampled Signal',', NPBB= ',num2str(NPBB)]); 
 
        subplot(2,1,2);     %show results after modulation (I signal) 
         
        if ( np > NPV )      
            stem(n(1:1:SAR*NPV),I(1:1:SAR*NPV));grid 
            axis([0 SAR*NPV -A*1.5 A*1.5]); 
        else 
            stem(n(1:rl),I);grid;    %plot the modulated signal 
            axis([0 SAR*NPV -A*1.5 A*1.5]); 
        end 
        xlabel('n (sample #)'),ylabel('Amplitude'); 
        title(['Sampled Signal Modulated by',num2str(barker),'-bit Barker Sequence',' NPBB= ',num2str(NPBB)]); 
 
        %********************* 
        %PSD of the carrier frequency before and afeter modulation 
        %********************* 
        figure(4);        
        subplot(2,1,1);     %plot PSD of unmodulated carrier 
        psd(xnT,[],fs); 
        xlabel('Frequency (Hz)'); 
        title(['PSD of Original Sampled Function, fs = ',num2str(fs),', # samples= ',num2str(rl)]); 
 
 
        subplot(2,1,2);     %plot PSD of modulated carrier (I) 
        psd(I,[],fs); 
        xlabel('Frequency (Hz)'); 
        title(['PSD of Modulated Function, fs = ',num2str(fs),', # samples= ',num2str(rl),', NPBB= 
',num2str(NPBB)]); 
         
        %********************** 
        %Show statistics and portion of the noise vector 
        %********************** 
        figure(5);            
        subplot(2,1,1);         %show noise 
signal vs time (sample) 
 
        if (length(noise) > 100 ); 
        plot(noise(1:100));grid; 
        title(['Plot of Noise Signal, channel I, # samples= ',num2str(rl),', only 100 shown']); 
        else 
        plot(noise);grid;       %look at complete noise 
vector 
        title(['Plot of Noise Signal, channel I, # samples= ',num2str(rl)]); 
        end 
 
        xlabel('Sample #'),ylabel('Magnitude'); 
 
 



214 

        subplot(2,1,2);      %show histogram, mu, and sigma of 
noise in I 
        hist(noise,30);      %show that the noise has normal 
distribution 
        xlabel('Magnitude'),ylabel('Frequency'); 
        title(['Histogram of Noise Signal, channel I']); 
 
        %********************** 
        %Compare I signal without noise to I signal with noise 
        %********************** 
        % Figure 6 shows how the noise affects the signal.  Depending upon parameter 
        % settings, the user may wish to use the plot commands instead of the stem 
        % commands that are used. 
        figure(6);         
        subplot(2,1,1);      %show I signal without noise 
 
        if ( np > NPV ) 
            stem(n(1:1:SAR*NPV),I(1:1:SAR*NPV));grid; 
            axis([0 SAR*NPV -A*1.5 A*1.5]); 
            %plot(n(1:1:SAR*NPV),I(1:1:SAR*NPV),'x');    
        else 
            stem(n(1:rl),I);grid;   %plot the modulated signal 
            axis([0 SAR*NPV -A*1.5 A*1.5]); 
        end 
 
        xlabel('n (sample #)'),ylabel('Amplitude'); 
        title(['Sampled Signal Modulated by', num2str(barker),'-bit Barker Sequence',', NPBB= 
',num2str(NPBB)]); 
 
 
        subplot(2,1,2);      %show I signal after noise has been 
added 
 
        if ( np > NPV ) 
            stem(n(1:1:SAR*NPV),IwN(1:1:SAR*NPV));grid; 
            %plot(n(1:1:SAR*NPV),IwN(1:1:SAR*NPV),'x'); 
        else 
            stem(n(1:rl),IwN); grid;     %plot the modulated signal with noise 
added 
        end 
 
        xlabel('n (sample #)'),ylabel('Amplitude'); 
        title(['Sampled Signal Modulated by', num2str(barker),'-bit Barker Sequence, WGN added',', SNR= 
',num2str(SNRdb ,3),'dB']); 
 
        %****************** 
        % Now, simply to gain a better understanding of how the same noise impacts the PSD 
        % of the modulated signal and the unmodulated signal, show a PSD of the unmodulated 
        % signal once noise has been added to it and a PSD of the modulated signal with the 
        % same noise vector added. 
 
        figure(7); 
        subplot(2,1,1);     %PSD of unmodulated signal with noise added 
        psd(xnTwN,[],fs); 
        title(['PSD of Unmodulated Signal with Noise, fs = ',num2str(fs),', # samples= ',num2str(rl),', NPBB= 
',num2str(NPBB),', SNR= ',num2str(SNRdb,2),'dB']); 



215 

 
        subplot(2,1,2);     %PSD of modulated signal with noise added 
        psd(IwN,[],fs); 
        title(['PSD of Modulated Function with Noise, fs = ',num2str(fs),', # samples= ',num2str(rl),', NPBB= 
',num2str(NPBB)]); 
         
 
        %****************** 
        % In this section we create two types of matched filters and analyze the results 
        % of each after running the modulated signal (without noise) through them.  One filter 
        % is designed as the standard integrate and dump (reverse the original filter, run the 
        % modulated signal through it, multiplying the overlapping bits of the two sequences 
        % together and summing them up for each step through the filter).  This filter is 
        % primarily used to find a binary signal that has been encoded in the carrier, but 
        % it doesn't work well when trying to find the carrier signal.  The second filter is 
        % similar to the first, but once the multiplication of overlapping bits is completed, 
        % the individual products are then multiplied by the bits of a clean sampled version 
        % of the carrier signal.  The individual products are then added together and stored 
        % as the comparison value for that step (sample #) in the filter sequence.   
        %****************** 
 
        % 1st, duplicate the modulated signal and pad it with leading and trailing zeros 
        xmm = [zeros(1,length(brk)-1) I zeros(1,length(brk)-1)];  
        mf  = [brk(length(brk):-1:1)];%reverse n-bit Barker code to create matched filter 
 
        % 2nd, get sequence of original sample and reverse it for tailored filter 
        tf = xnT(1:length(brk));  %get 1 complete sequence of original signal for comparison 
        tf = [tf(length(tf):-1:1)];%reverse the order to match with the filtered signal 
 
        % initialize vectors to store the result 
        cmtdump = [zeros(1,ns*length(brk)/pw)];%vector to store traditional filter results 
        cmt = [zeros(1,ns*length(brk)/pw)];  %vector to store tailored filter results 
 
        for step = 1:1:ns*length(brk);   %step through the sequence 
            temp = xmm(step:step+length(brk)-1);%get n Barker bits worth of samples 
         temp = [temp(length(temp):-1:1)]; %reverse order to run through matched filter 
            temp = temp.*mf;       %put against matched filter 
            cmtdump( step ) = sum(temp);   %integrate and dump method 
            temp = temp.*tf;       %compare with tailored filter 
            cmt( step ) = abs(sum(temp));   %store results of tailored filter 
        end 
 
        %normalize the results so that the maximum value = 1 
        cmtdump = cmtdump/max(cmtdump); 
        cmt = cmt/max(cmt); 
        figure(8);   %show the results of each of the filters 
 
        subplot(2,1,1); %show results of traditional filter 
        if ( step-1 > 3*length(brk)/pw) 
            plot(10*NPBB:3*length(brk),cmtdump(10*NPBB:3*length(brk)));grid; 
        else 
            plot(1:step-1,cmtdump);grid; 
        end 
        xlabel('Sample #'),ylabel('Strength (normalized)'); 
        title(['Comparison with Original after Traditional Matched Filter, no noise added']); 
         



216 

        %The next line of code sets the x-axis tick marks to occur where the samples should 
        %have the closest match to the original signal.  This will be the product of the 
        %length of the Barker code (n), the sample rate (SAR), and the number of periods of 
        % of the signal per Barker bit (NPBB), which is equal to the length of brk. 
        set (gca,'XTick',[length(brk):length(brk):ns*length(brk)]); 
 
 
        subplot(2,1,2); %show results of tailored filter 
        if (step-1 > 3*length(brk)/pw) 
            plot(10*NPBB:3*length(brk),cmt(10*NPBB:3*length(brk)));grid; 
        else 
            plot(1:step-1,cmt);grid 
        end 
        xlabel('Sample #'),ylabel('Strength (normalized)'); 
        title(['Comparison with Original after Tailored Matched Filter, no noise added']); 
        set (gca,'XTick',[length(brk):length(brk):ns*length(brk)]); 
         
 
        %*************** 
        % Apply both filters like above, but this time to the signal with noise added 
        %*************** 
        xmmn = [zeros(1,length(brk)-1) IwN zeros(1,length(brk)-1)]; %duplicate and pad modulated vector 
        cmt  = [zeros(1,ns*length(brk)/pw)]; 
        cmtdump = [zeros(1,ns*length(brk)/pw)]; 
 
        for step = 1:1:ns*length(brk);   %step through each Barker bit (pw sample separation) 
            temp = xmmn(step:step+length(brk)-1);%get n bits worth of samples 
            temp = [temp(length(temp):-1:1)]; %reverse the order to run through matched filter 
            temp = temp.*mf;       %put against matched filter 
            cmtdump( step ) = sum(temp);   %traditional integrate and dump filter results 
            temp = temp.*tf;       %compare with tailored filter 
            cmt( step ) = abs(sum(temp));   %accumulate tailored filter results 
        end 
 
        %normalize the results so that maximum = 1 
        cmtdump = cmtdump/max(cmtdump); 
        cmt = cmt/max(cmt); 
        figure(9);   %show results of each of the filters 
        subplot(2,1,1); %show results of traditional filter 
        if ( step-1 > 2.2*SAR*NPBB*length(brk)/(pw)) 
            
plot(10*NPBB:floor(2.2*SAR*NPBB*length(brk)/(pw)),cmtdump(10*NPBB:floor(2.2*SAR*NPBB*length(br
k)/(pw))));grid; 
        else 
            plot(1:step-1,cmtdump);grid; 
        end 
 
        xlabel('Sample #'),ylabel('Strength (normalized)'); 
        title(['Comparison with Original after Traditional Matched Filter, with noise, SNR= 
',num2str(SNRdb,2),'dB']); 
        set (gca,'XTick',[length(brk):length(brk):ns*length(brk)]); 
 
 
        subplot(2,1,2); %show results of tailored filter 
        if (step-1 > 2.2*SAR*NPBB*length(brk)/(pw)) 



217 

            
plot(10*NPBB:floor(2.2*SAR*NPBB*length(brk)/(pw)),cmt(10*NPBB:floor(2.2*SAR*NPBB*length(brk)/(p
w)))); 
            grid; 
        else 
            plot(1:step-1,cmt);grid 
        end 
 
        xlabel('Sample #'),ylabel('Strength (normalized)'); 
        title(['Comparison with Original after Tailored Matched Filter, with noise, SNR= 
',num2str(SNRdb,2),'dB']); 
        set (gca,'XTick',[length(brk):length(brk):ns*length(brk)]); 
else 
    disp('Signal not plotted') 
    fprintf('\n\n') 
end 
% In order to get a standard format of the data coming from this program and the P4, FMCW the I and Q 
channels 
% are saved as I and Q with the Noise included 
format short e; 
IwN=IwN'; 
QwN=QwN'; 
disp(' ') 
 
plt2 = input('Do you want to save the new signal (Y/y or N/n) ?','s'); 
disp(' ') 
if (plt2 == 'Y') | (plt2 =='y') 
 
    I2=I; Q2=Q; 
    I=IwN; Q=QwN; 
    ff=floor(f/1e3); 
    ffs=floor(fs/1e3); 
    save(['B_', num2str(ff), '_', num2str(ffs), '_', num2str(barker), '_', 
num2str(NPBB),'_',num2str(SNRdb)],'I','Q'); 
    I=I2'; 
    Q=Q2'; 
    save(['B_' num2str(ff) '_' num2str(ffs) '_' num2str(barker) '_' num2str(NPBB) '_s'],'I','Q'); 
    disp(' '); 
    disp(['Signal and noise save as :  B_', num2str(ff), '_', num2str(ffs), '_', num2str(barker), '_', 
num2str(NPBB),'_',num2str(SNRdb)]); 
    disp(['Signal only save as :         B_', num2str(ff), '_', num2str(ffs), '_', num2str(barker), '_', 
num2str(NPBB),'_s']); 
    disp(['Directory:                       ' num2str(cd)]);  
else 
    disp(' ') 
    disp('Signal not saved') 
    fprintf('\n\n') 
end 
 
 
 
 
 
 
 
 



218 

%****************************************************************************** 
% fmcw.m 
% 
% Use:  Code to generated triangular FMCW signals 
% 
% Inputs:       Amplitud of the carrier signal 
%          Carrier signal frequency - f (Hz) 
%               Sampling frequency - fs (HZ) 
%               Desired SNR in dB 
%               Modulation bandwidth 
%               Modulation period 
%               Number of triangles in the signal  
%                
% 
%Output:        In-phase (I) and Quadarture (Q) components of the signal 
%               Plots 
% 
%January 17, 2002 
%Maj Fernando Taboada - Venezuelan Army 
%****************************************************************************** 
 
clc;clear all; 
disp('*******************************************'); 
disp('******************* FMCW ********************'); 
disp('**********************************************'); 
 
% DEFAULT VARIABLES  
A  = 1;                  %Amplitud of the carrier signal 
f0 =1e3;                                %Carrier signal frequency -  (Hz) 
fs = 7e3;                         %Sampling frequency 
SNR_dB  = 0;             %Desired SNR in dB 
deltaF = 250;                %Modulation bandwidth 
tm = 0.05;                 %Modulation period 
triangles=5;                            %No of triangles to be generated  
sigma=1;                             
 
% NEW INPUT  
newvar = 1; 
while newvar == 1; 
    disp(' ') 
    disp('WHICH PARAMETER DO YOU WANT TO SET ?  ') 
    disp(' ') 
    fprintf('1. Amplitud of the carrier signal - A= %g.\n', A)  
    fprintf('2. Carrier frequency - f0 (Hz)= %g.\n', f0)     
    fprintf('3. Sampling frequency - fs (Hz)=%g.\n',fs)   
    fprintf('4. Signal to noise ratio - SNR_dB (dB)= %g.\n', SNR_dB)    
    fprintf('5. Modulation bandwidth - deltaF (Hz)= %g.\n', deltaF) 
    fprintf('6. Modulation period - tm (sec)= %g.\n',tm) 
    fprintf('7. Number of triangles - triangles=%g.\n',triangles) 
    fprintf('8. No changes\n') 
    disp(' ') 
    option= input('Select a option: '); 
    switch option 
    case 1 
        A=input('New Amplitud of the carrier signal= ');         
    case 2 



219 

        f0=input('Carrier frequency (Hz)='); 
    case 3 
        fs=input('New Sampling frequency (Hz)= '); 
    case 4         
        SNR_dB=input('New Signal to noise ratio (dB)= ');  
    case 5         
        deltaF=input('New modulation bandwidth (Hz)= '); 
    case 6 
        tm=input('New modulation period (sec)= '); 
    case 7 
        triangles =input('How many triangles (4/5/6) = '); 
    case 8 
        newvar = 0; 
    end 
    clc; 
end 
 
 
if SNR_dB ~= -inf 
   SNR = 10^(SNR_dB/20);   %20log since we're dealing with voltage 
   sigma = A/(sqrt(2)*SNR);      %Std. Dev. of noise required to achieve input SNR 
else  
   SNR = 0;                   %For noise only, SNR = 0 
   sigma = 1;                   %If user wants noise only, let Std Dev = 1 
end 
 
ts = 1/fs;                                    %Sample Period 
time = (0:ts:tm)'; %Vector of sample times 
 
%Build the pure sin & cos waveforms 
I_carrier = cos(2*pi*f0.*time); % Carrier signals 
Q_carrier = sin(2*pi*f0.*time); % Carrier signals 
 
  
 
f1 = f0 - deltaF/2 + deltaF/tm.*time;  %Up-ramp side of triangle 
f2 = f0 + deltaF/2 - deltaF/tm.*time;  %Down-ramp side of triangle 
 
%To represent different numbers of triangles 
if triangles==1 
    f = 1e-6*[f1;f2]; 
    elapsed_time = 1e6.*(linspace(0,2*tm,length(f)))';  
elseif triangles ==4 
    f = 1e-6*[f1;f2;f1;f2;f1;f2;f1;f2]; 
    elapsed_time = 1e6.*(linspace(0,8*tm,length(f)))'; %time vector used to plot f 
            
     %time is in microseconds 
elseif triangles ==5 
    f = 1e-6*[f1;f2;f1;f2;f1;f2;f1;f2;f1;f2];   %produces train of 5 triangle pulses 
    elapsed_time = 1e6.*(linspace(0,10*tm,length(f)))'; 
else triangles ==6                                          %frequencies are in MHz 
    f = 1e-6*[f1;f2;f1;f2;f1;f2;f1;f2;f1;f2;f1;f2]; 
    elapsed_time = 1e6.*(linspace(0,12*tm,length(f)))'; 
end 
                                                     
    



220 

%sI1 is the In-Phase (I) transmitted signal for the up-ramp (without noise) 
%sI2 is the In-Phase (I) transmitted signal for the down-ramp (without noise) 
if SNR ~= 0 
   sI1 = A*cos(2*pi*((f0-deltaF/2).*time + deltaF/(2*tm).*time.^2)); 
   sI2 = A*cos(2*pi*((f0+deltaF/2).*time - deltaF/(2*tm).*time.^2)); 
else 
   sI1 = zeros(length(time),1);  %If noise only, Signal = 0 
   sI2 = zeros(length(time),1); 
end 
 
%Next two lines add req'd noise level to up & down ramps (I channel). 
%Used to plot time sequence & PSD for each ramp 
sI1_noisy = sI1 + sigma*randn(length(sI1),1); 
sI2_noisy = sI2 + sigma*randn(length(sI2),1); 
 
 
%Creates the I-channel time sequence of four up&down ramp pairs (NO noise) 
I = [sI1;sI2;sI1;sI2;sI1;sI2;sI1;sI2]; 
 
%Adds the required noise to the time sequence 
 
[a,b]=size(I); 
SNR=10^(SNR_dB/10); 
power=10*log10(A^2/(2*SNR));%calculate SNR in dB for WGN function 
noise=wgn(a,b,power);%calculate noise at specified SNR 
IwN=I+noise;               %add noise to I with P4 phase shift 
 
 
%sQ1 is the Quadrature (Q) transmitted signal for the up-ramp (without noise) 
%sQ2 is the Quadrature (Q) transmitted signal for the down-ramp (without noise) 
if SNR ~= 0 
   sQ1 = A*sin(2*pi*((f0-deltaF/2).*time + deltaF/(2*tm).*time.^2)); 
   sQ2 = A*sin(2*pi*((f0+deltaF/2).*time - deltaF/(2*tm).*time.^2)); 
else 
   sQ1 = zeros(length(time),1);  %If noise only, Signal = 0 
   sQ2 = zeros(length(time),1); 
end 
 
%Next two lines add req'd noise level to up & down ramps (Q channel). 
%Used to plot time sequence & PSD for each ramp 
sQ1_noisy = sQ1 + sigma*randn(length(sQ1),1); 
sQ2_noisy = sQ2 + sigma*randn(length(sQ2),1); 
 
 
 
%Creates the Q-channel time sequence of four up&down ramp pairs (NO noise) 
Q = [sQ1;sQ2;sQ1;sQ2;sQ1;sQ2;sQ1;sQ2]; 
 
%Adds the required noise to the time sequence 
 
QwN=Q+noise;   
 
%******************************************************* 
%PLOTS 
%****************************************************** 
 



221 

disp(' ') 
plt = input('Do you want to generate plots of the signal (Y/y or N/n) ?','s'); 
disp(' ') 
if (plt == 'Y') | (plt =='y') 
    disp(' ') 
    %Plots time sequence & PSDs of In-Phase (cos) waveform 
    figure;  
    subplot(2,1,1); 
    plot(time(1:50),I_carrier(1:50)); grid; 
    title('Pure In-Phase Sinusoidal Carrier'); 
    xlabel('Time (s)'); ylabel('Cos(2*pi*f_0*t)'); 
    subplot(2,1,2); 
    psd(I_carrier,[],fs); 
    title('Power Spectral Density of Pure In-Phase Carrier');    
     
    %Plots time sequence & PSDs of Quadrature (sin) waveform 
    figure;  
    subplot(2,1,1); 
    plot(time(1:50),Q_carrier(1:50)); grid; 
    title('Pure Quadrature Sinusoidal Carrier'); 
    xlabel('Time (s)'); ylabel('-Sin(2*pi*f_0*t)'); 
    subplot(2,1,2); 
    psd(Q_carrier,[],fs); 
    title('Power Spectral Density of Pure Quadrature Carrier');    
     
    %Plots the triangular modulating waveform 
    figure; 
    plot(elapsed_time,f); grid; 
    title('Triangular Modulating Signal') 
    xlabel('Time (us)'); ylabel('Frequency (MHz)'); 
     
    %Plots time sequence & PSD for I-channel up ramp 
    figure; 
    subplot(2,1,1); 
    plot(time, sI1_noisy); grid; 
    title(['In-Phase, Up-Ramp Transmitted Signal - SNR = ', num2str(SNR_dB), ' dB']) 
    xlabel('Time (s)'); ylabel('Signal'); 
    subplot(2,1,2); 
    psd(sI1_noisy,[],fs); 
    title('Power Spectral Density of In-Phase, Up-Ramp Segment'); 
     
     
     %Plots time sequence & PSD for I-channel down ramp 
    figure; 
    subplot(2,1,1); 
    plot(time, sI2_noisy); grid 
    title(['In-Phase, Down-Ramp Transmitted Signal- SNR = ', num2str(SNR_dB), ' dB']) 
    xlabel('Time (s)'); ylabel('Signal'); 
    subplot(2,1,2); 
    psd(sI2_noisy,[],fs); 
    title('Power Spectral Density of In-Phase, Down-Ramp Segment'); 
     
     
    %Plots time sequence & PSD for Q-channel up ramp 
    figure; 
    subplot(2,1,1); 



222 

    plot(time, sQ1_noisy);grid; 
    title(['Quadrature, Up-Ramp Transmitted Signal - SNR = ', num2str(SNR_dB), ' dB']) 
    xlabel('Time (s)'); ylabel('Signal'); 
    title(['Quadrature, Up-Ramp Transmitted Signal (Near End) - SNR = ', num2str(SNR_dB), 'dB']) 
    xlabel('Time (s)'); ylabel('Signal'); 
    subplot(2,1,2); 
    psd(sQ1_noisy,[],fs); 
    title('Power Spectral Density of Quadrature, Up-Ramp Segment'); 
     
     
    %Plots time sequence & PSD for Q-channel down ramp 
    figure; 
    subplot(2,1,1); 
    plot(time, sQ2_noisy); grid; 
    title(['Quadrature, Down-Ramp Transmitted Signal - SNR = ', num2str(SNR_dB), 'dB']) 
    xlabel('Time (s)'); ylabel('Signal'); 
    subplot(2,1,2); 
    psd(sQ2_noisy,[],fs); 
    title('Power Spectral Density of Quadrature, Down-Ramp Segment'); 
     
else 
    disp('Signal not plotted') 
    fprintf('\n\n') 
end 
 
 
%Saves the I & Q vectors in a .mat file for processing by the receiver folks 
disp(' ') 
saveresult = input('Do you want to save the new signal (Y/y or N/n) ?','s'); 
if (saveresult == 'Y') | (saveresult =='y')  
    I2=I; Q2=Q; 
    I=IwN; Q=QwN; 
    ff=floor(f0/1e3); 
    ffs=floor(fs/1e3); 
    save(['F_', num2str(ff), '_', num2str(ffs), '_', num2str(deltaF), '_', num2str(tm/1000), 
'_',num2str(SNR_dB)],'I','Q'); 
    I=I2; 
    Q=Q2; 
    save(['F_' num2str(ff) '_' num2str(ffs) '_' num2str(deltaF) '_' num2str(tm/1000) '_s'],'I','Q'); 
    disp(' '); 
    disp(['Signal and noise save as :  F_' num2str(ff) '_' num2str(ffs) '_' num2str(deltaF) '_' num2str(tm/1000) 
'_'num2str(SNR_dB)]); 
    disp(['Signal only save as :         F_' num2str(ff) '_' num2str(ffs) '_' num2str(deltaF) '_' num2str(tm/1000) 
'_s']); 
    disp(['Directory:                       ' num2str(cd)]);  
else 
    disp(' ') 
    disp('Signal not saved') 
    fprintf('\n\n') 
end 
 
 



223 

%****************************************************************************** 
% frank.m 
% 
% Use:  Code to generated FRANK-coded signals 
% 
% Inputs:       Amplitud of the carrier signal 
%          Carrier signal frequency - f (Hz) 
%               Sampling frequency - fs (HZ) 
%               Desired SNR in dB 
%               Number of phases 
%               Number of cycles per phase 
%                
% 
%Output:        In-phase (I) and Quadarture (Q) components of the signal 
%               Plots 
% 
%May 1, 2002 
%Maj Fernando Taboada - Venezuelan Army 
%****************************************************************************** 
 
clear all; 
clc; 
disp('*******************************************'); 
disp('**************FRANK  CODE ******************'); 
disp('**********************************************'); 
 
%DEFAULT VARIABLES 
A=1;                          % Amplitude of CW 
f =1e3;                       % Carrier frequency  
fs =7e3;                      % Sample Rate  
SNR_dB = 0;                   %Signal to Noise Ratio 
scale=30;                     % Scaling for plotting time domain graphs 
j=sqrt(-1);                   % j 
m=8;                          % Number of code phases 
cpp = 1;                      %Number of cycles per phase 
 
% NEW INPUT  
newvar = 1; 
while newvar == 1; 
    disp(' ') 
    disp('WHICH PARAMETER DO YOU WANT TO SET ?  ') 
    disp(' ') 
    fprintf('1. Amplitude of the carrier signal - A= %g.\n', A) 
    fprintf('2. Carrier frequency - f (Hz) = %g.\n', f) 
    fprintf('3. Sampling frequency - fs (Hz)= %g.\n', fs) 
    fprintf('4. Signal to noise ratio - SNR_dB (dB) = %g.\n', SNR_dB) 
    fprintf('5. Number of phase codes - m = %g.\n', m) 
    fprintf('6. Number of cycles per phase - cpp = %g.\n', cpp) 
    fprintf('7. No changes\n') 
    disp(' ') 
    option= input('Select a option: '); 
     
    switch option 
    case 1 
        A=input('New amplitude of the carrier signal= ');  
    case 2 



224 

        f=input('New carrier frequency (Hz) = '); 
    case 3 
        fs=input('New sampling frequency (Hz)= '); 
    case 4 
       SNR_dB=input('New signal to noise ratio (dB)= '); 
    case 5 
        m=input('New number of phase codes ='); 
    case 6 
        cpp=input('New number of cycles per phase='); 
    case 7 
        newvar = 0; 
    end 
    clc; 
end 
 
SAR=ceil(fs/f);          % Sampling ratio 
tb=1/(fs);                   % Sampling period 
 
 
N=m; 
%Creating the phase matrix 
 
    for i=1:m 
        for j=1:m 
            phi(i,j)=2*pi/N*(i-1)*(j-1); 
        end 
    end 
     
% This section generates I & Q without Frank phase shift and I & Q with Phase shift.  The signals are generated  
% five times by the outer loop.  The variable 'index' is used to generate a time vector for time domain plots.  
% The signal is generated at seven samples per phase change.    
 
index=0; 
for p=1:5 %Generate the signal five times and store sequentially in corresponding vectors 
    for i=1:m %Loop to shift phase  
        for j=1:m 
            for n=1:SAR*cpp                                           %Loop to increment time for single phase value. 
                I(index+1)=A*cos(2*pi*f*(n-1)*tb+phi(i,j)); %Calculate in phase component of signal with phase 
shift 
                IWO(index+1)=A*cos(2*pi*f*(n-1)*tb); % Calculate in phase component of signal without phase 
shift 
                Q(index+1)=A*sin(2*pi*f*(n-1)*tb+phi(i,j)); % Calculate quadrature component of signal with phase 
shift 
                QWO(index+1)=A*sin(2*pi*f*(n-1)*tb); %Calculate quadrature component of signal without phase 
shift 
                time(index+1)=index*tb; %time vector cumulation 
                index = index +1; 
            end 
        end 
    end 
end 
 
%Power Spectral Density for I with phase shift & with WGN with Signal to noise ratios (SNR) = [0,-5,5,10,-
10,-20] 
%for loop makes calculations and plots for each value of SNR for WGN 
[a,b]=size(I); 



225 

SNR=10^(SNR_dB/10); 
power=10*log10(A^2/(2*SNR));%calculate SNR in dB for WGN function 
noise=wgn(a,b,power);%calculate noise at specified SNR 
IN=I+noise;               %add noise to I with Frank phase shift 
IPWON=I;                %I with phase shift without noise 
QN=Q+noise;            %add noise to Q with Frank phase shift 
QPWON=Q;             %Q with phase shift without noise 
     
ff=floor(f/1e3); 
ffs=floor(fs/1e3); 
%******************************************************* 
%PLOTS 
%****************************************************** 
 
disp(' ') 
plt = input('Do you want to generate plots of the signal (Y/y or N/n) ?','s'); 
disp(' ') 
if (plt == 'Y') | (plt =='y') 
    disp(' ') 
    %Plot Power Spectral Density for I without phase shift 
    figurecount=1; %figurecount is plot index  
    figure (figurecount); % open new figure for plot 
    psd(IWO,[],fs); %Power Spectral Density of I without Phase shift 
    title([' PSD of I without Phase Shift or Noise']); 
    figurecount=figurecount+1; %increment figure count 
     
    %time domain plot of in phase signal I without phase shift 
    figure (figurecount); % open new figure for plot 
    % plot small portion of time domain signal I so that data will fit meaningfully in figure.   
    %floor(size(time,2)/scale) selects a small sample of the vectors to plot 
     
    plot (time(1:floor(size(time,2)/scale)),IWO(1:floor(size(time,2)/scale)));  
    title([ ' Time Domain of I without Phase Shift or Noise']); 
    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 
    grid on; 
    figurecount=figurecount+1; %increment figure index 
     
    %Power Spectral Density for I with phase shift 
    figure (figurecount); %open new figure for plot 
    psd(I,[],fs); %plot power spectral density of I with phase shift 
    title([' PSD of I Phase Shift & no Noise']); 
    figurecount=figurecount+1; %increment figure index 
    %time domain plot of in phase signal I with phase shift 
    figure (figurecount); %open new figure for plot 
      
    % plot small portion of time domain signal I so that data will fit meaningfully in figure.   
    %floor(size(time,2)/scale) selects a small sample of the vectors to plot 
    plot (time(1:floor(size(time,2)/scale)),I(1:floor(size(time,2)/scale))); 
    title([' Time Domain of I with Phase Shift & no Noise']); 
    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
     



226 

    %Plot PSD and Time Domain of I+ Frank Phase + WGN and Time Domain of I + Frank Phase 
     
    figure (figurecount);% open new figure for plot 
    psd(IN,[],fs);%plot PSD for specified noise SNR 
    title([' PSD of I with Phase Shift & Noise SNR=' num2str(10*log10(SNR))]); 
    figurecount=figurecount+1;%increment figure index 
     
    %plot time domain signal I with Frank phase shift and WGN at specified SNR 
    figure (figurecount);%open new figure for plot 
    plot(time(1:floor(size(time,2)/scale)),IN(1:floor(size(time,2)/scale))); 
    title([' Time Domain of I with Phase Shift & Noise SNR=' num2str(10*log10(SNR))]); 
    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
    figure (figurecount);% open new figure for plot 
    plot(time(1:floor(size(time,2)/scale)),IPWON(1:floor(size(time,2)/scale))); 
    title([' Time Domain of I with Phase Shift witoutout Noise']); 
    xlabel('{\itTime - Seconds} '); 
    ylabel ('Amplitude'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
    % Now check to see if signal is correct by plotting phase shift alone and then determining phase shift from 
I+jQ. 
    % To determine phase shift, look at the phase angle of I+jQ at every 7th time interval.  Expect to see the 
Frank phase 
    % function plot repeated 5 times after unwrapping and detrending the phase angle. 
     
    figure(figurecount);%open new figure for plot 
    plot(phi); 
    title(['Frank Code Phase Shift']); 
    xlabel('i - index for phase change'); 
    ylabel('Frank Phase Shift - Theta'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
     
    figure(figurecount);%open new figure for plot 
     
   %to concatenate the phase matrix in only 1-row matrix 
    nn=0; 
    for ii=1:N 
        for jj=1:N 
            nn=nn+1; 
            phi2(nn)=phi(ii,jj); 
        end 
    end 
     
    xx=0:length(phi2)-1; 
    plot(xx,phi2);grid 
    title(['Frank Code Phase Shift']); 
    xlabel('i - index for phase change'); 
    ylabel('Frank Phase Shift - Theta'); 
    figurecount=figurecount+1;%increment figure index 



227 

     
    %Now strip out points from I and Q to reconstruct phase shift.  
    %I(1:SAR:floor(size(I,2)/5)) selects a data points with the phase values corresponding to the original phase 
calculation,; 
    %by indexing SAR through the first one fifth of the vector computed by floor(size(I,)/5).  The vector was 
repeated five times. 
    signal=I(1:SAR*cpp:size(I,2))+j*Q(1:SAR*cpp:size(I,2)); 
     
    phase_signal=angle(signal);%determine the angle from the complex signal 
     
    % unwrap(I) corrects the radian phase angles in array I by adding multiples of ±2pi 
    % when absolute jumps between consecutive array elements are greater than pi radians. 
    unphase=unwrap(phase_signal); 
    figure (figurecount);%open new figure for plot 
    plot (unphase); 
    title([' Frank Code Phase Shift from I+jQ ']); 
    xlabel('i - index for phase change'); 
    ylabel('Frank Phase Shift - Theta'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
  
    
else 
    disp('Signal not plotted') 
    fprintf('\n\n') 
end 
     
% This section generates the files for analysis 
 
INP=IN';%transpose I with noise and Frank phase shift for text file 
QNP=QN';%transpose Q with noise and Frank phase shift for text file 
IPWONT=IPWON';%transpose I with phase without noise for text file 
QPWONT=QPWON';%transpose Q with phase without noise for text file 
 
% % save results in data files 
 
I= INP(:,1); 
Q=QNP(:,1); 
  
II= IPWONT(:,1); 
QQ=QPWONT(:,1); 
  
disp(' ') 
saveresult = input('Do you want to save the new signal (Y/y or N/n) ?','s'); 
 
if (saveresult == 'Y') | (saveresult =='y')  
     
     
    save(['FR_', num2str(ff), '_', num2str(ffs), '_', num2str(m), '_', num2str(cpp) ,'_', num2str(SNR_dB)],'I','Q'); 
    I=II;  
    Q=QQ; 
    save(['FR_' num2str(ff) '_' num2str(ffs) '_' num2str(m) '_' num2str(cpp) '_s'],'I','Q'); 
    disp(' '); 
    disp(['Signal and noise save as :  FR_' num2str(ff) '_' num2str(ffs) '_' num2str(m) '_' num2str(cpp) '_' 
num2str(SNR_dB)]); 
    disp(['Signal only save as :         FR_' num2str(ff) '_' num2str(ffs) '_' num2str(m) '_' num2str(cpp) '_s']); 



228 

    disp(['Directory:                       ' num2str(cd)]);  
else 
    disp(' ') 
    disp('Signal not saved') 
    fprintf('\n\n') 
end 
 
 



229 

%****************************************************************************** 
% p1.m 
% 
% Use:  Code to generated P1-coded signals 
% 
% Inputs:       Amplitud of the carrier signal 
%          Carrier signal frequency - f (Hz) 
%               Sampling frequency - fs (HZ) 
%               Desired SNR in dB 
%               Number of phases 
%               Number of cycles per phase 
%                
% 
%Output:        In-phase (I) and Quadarture (Q) components of the signal 
%               Plots 
% 
%May 1, 2002 
%Maj Fernando Taboada - Venezuelan Army 
%****************************************************************************** 
 
clear all; 
clc; 
disp('*******************************************'); 
disp('******************P1  CODE ******************'); 
disp('**********************************************'); 
 
%DEFAULT VARIABLES 
A=1;                          % Amplitude of CW 
f =1e3;                       % Carrier frequency  
fs =7e3;                      % Sample Rate  
SNR_dB = 0;                   %Signal to Noise Ratio 
scale=30;                     % Scaling for plotting time domain graphs 
j=sqrt(-1);                   % j 
m=8;                          % Number of code phases 
cpp = 1;                      %Number of cycles per phase 
 
% NEW INPUT  
newvar = 1; 
while newvar == 1; 
    disp(' ') 
    disp('WHICH PARAMETER DO YOU WANT TO SET ?  ') 
    disp(' ') 
    fprintf('1. Amplitude of the carrier signal - A= %g.\n', A) 
    fprintf('2. Carrier frequency - f (Hz) = %g.\n', f) 
    fprintf('3. Sampling frequency - fs (Hz)= %g.\n', fs) 
    fprintf('4. Signal to noise ratio - SNR_dB (dB) = %g.\n', SNR_dB) 
    fprintf('5. Number of phase codes - m = %g.\n', m) 
    fprintf('6. Number of cycles per phase - cpp = %g.\n', cpp) 
    fprintf('7. No changes\n') 
    disp(' ') 
    option= input('Select a option: '); 
     
    switch option 
    case 1 
        A=input('New amplitude of the carrier signal= ');  
    case 2 



230 

        f=input('New carrier frequency (Hz) = '); 
    case 3 
        fs=input('New sampling frequency (Hz)= '); 
    case 4 
       SNR_dB=input('New signal to noise ratio (dB)= '); 
    case 5 
        m=input('New number of phase codes ='); 
    case 6 
        cpp=input('New number of cycles per phase='); 
    case 7 
        newvar = 0; 
    end 
    clc; 
end 
 
SAR=ceil(fs/f);          % Sampling ratio 
tb=1/(fs);                   % Sampling period 
% Phase code for P4 from IEEE Internaltional Radar Conference Paper 
% SIDELOBE REDUCTION TECHNIQUES FOR POLYPHASE PULSE COMPRESSSION CODES 
% by P1 F. Kretshcmer and Laurence R. Welch.    
% 
 
 
%Creating the phase matrix 
N=m; 
    for i=1:m 
        for j=1:m 
            phi(i,j)= (-pi/N)*[N-(2*j-1)]*[(j-1)*N+(i-1)]; 
        end 
    end 
     
 
% 
% This section generates I & Q without P4 phase shift and I & Q with Phase shift.  The signals are generated  
% five times by the outer loop.  The variable 'index' is used to generate a time vector for time domain plots.  
% The signal is generated at seven samples per phase change.    
 
index=0; 
for p=1:5 %Generate the signal five times and store sequentially in corresponding vectors 
    for i=1:m %Loop to shift phase  
        for j=1:m 
            for n=1:SAR*cpp                                           %Loop to increment time for single phase value. 
                I(index+1)=A*cos(2*pi*f*(n-1)*tb+phi(i,j)); %Calculate in phase component of signal with phase 
shift 
                IWO(index+1)=A*cos(2*pi*f*(n-1)*tb); % Calculate in phase component of signal without phase 
shift 
                Q(index+1)=A*sin(2*pi*f*(n-1)*tb+phi(i,j)); % Calculate quadrature component of signal with phase 
shift 
                QWO(index+1)=A*sin(2*pi*f*(n-1)*tb); %Calculate quadrature component of signal without phase 
shift 
                time(index+1)=index*tb; %time vector cumulation 
                index = index +1; 
            end 
        end 
    end 
end 



231 

 
%Power Spectral Density for I with phase shift & with WGN with Signal to noise ratios (SNR) = [0,-5,5,10,-
10,-20] 
%for loop makes calculations and plots for each value of SNR for WGN 
[a,b]=size(I); 
SNR=10^(SNR_dB/10); 
power=10*log10(A^2/(2*SNR));%calculate SNR in dB for WGN function 
noise=wgn(a,b,power);%calculate noise at specified SNR 
IN=I+noise;               %add noise to I with P4 phase shift 
IPWON=I;                %I with phase shift without noise 
QN=Q+noise;            %add noise to Q with P4 phase shift 
QPWON=Q;             %Q with phase shift without noise 
     
 
%******************************************************* 
%PLOTS 
%****************************************************** 
 
disp(' ') 
plt = input('Do you want to generate plots of the signal (Y/y or N/n) ?','s'); 
disp(' ') 
if (plt == 'Y') | (plt =='y') 
    disp(' ') 
    %Plot Power Spectral Density for I without phase shift 
    figurecount=1; %figurecount is plot index  
    figure (figurecount); % open new figure for plot 
    psd(IWO,[],fs); %Power Spectral Density of I without Phase shift 
    title(['Fig #' num2str(figurecount) ' PSD of I without Phase Shift or Noise']); 
    figurecount=figurecount+1; %increment figure count 
     
    %time domain plot of in phase signal I without phase shift 
    figure (figurecount); % open new figure for plot 
    % plot small portion of time domain signal I so that data will fit meaningfully in figure.   
    %floor(size(time,2)/scale) selects a small sample of the vectors to plot 
     
    plot (time(1:floor(size(time,2)/scale)),IWO(1:floor(size(time,2)/scale)));  
    title(['Fig #' num2str(figurecount) ' Time Domain of I without Phase Shift or Noise']); 
    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 
    grid on; 
    figurecount=figurecount+1; %increment figure index 
     
    %Power Spectral Density for I with phase shift 
    figure (figurecount); %open new figure for plot 
    psd(I,[],fs); %plot power spectral density of I with phase shift 
    title(['Fig #' num2str(figurecount) ' PSD of I Phase Shift & no Noise']); 
    figurecount=figurecount+1; %increment figure index 
    %time domain plot of in phase signal I with phase shift 
    figure (figurecount); %open new figure for plot 
      
    % plot small portion of time domain signal I so that data will fit meaningfully in figure.   
    %floor(size(time,2)/scale) selects a small sample of the vectors to plot 
    plot (time(1:floor(size(time,2)/scale)),I(1:floor(size(time,2)/scale))); 
    title(['Fig #' num2str(figurecount) ' Time Domain of I with Phase Shift & no Noise']); 
    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 



232 

    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
     
    %Plot PSD and Time Domain of I+ P4 Phase + WGN and Time Domain of I + P4 Phase 
     
    figure (figurecount);% open new figure for plot 
    psd(IN,[],fs);%plot PSD for specified noise SNR 
    title(['Fig #' num2str(figurecount) ' PSD of I with Phase Shift & Noise SNR=' num2str(10*log10(SNR))]); 
    figurecount=figurecount+1;%increment figure index 
     
    %plot time domain signal I with P4 phase shift and WGN at specified SNR 
    figure (figurecount);%open new figure for plot 
    plot(time(1:floor(size(time,2)/scale)),IN(1:floor(size(time,2)/scale))); 
    title(['Fig #' num2str(figurecount) ' Time Domain of I with Phase Shift & Noise SNR=' 
num2str(10*log10(SNR))]); 
    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
    figure (figurecount);% open new figure for plot 
    plot(time(1:floor(size(time,2)/scale)),IPWON(1:floor(size(time,2)/scale))); 
    title(['Fig #' num2str(figurecount) ' Time Domain of I with Phase Shift witoutout Noise']); 
    xlabel('{\itTime - Seconds} '); 
    ylabel ('Amplitude'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
    % Now check to see if signal is correct by plotting phase shift alone and then determining phase shift from 
I+jQ. 
    % To determine phase shift, look at the phase angle of I+jQ at every 7th time interval.  Expect to see the P4 
phase 
    % function plot repeated 5 times after unwrapping and detrending the phase angle. 
     
    figure(figurecount);%open new figure for plot 
    plot(phi); 
    title(['Fig #' num2str(figurecount) 'P1 Code Phase Shift']); 
    xlabel('i - index for phase change'); 
    ylabel('P1 Phase Shift - Theta'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
     
    figure(figurecount);%open new figure for plot 
     
   %to concatenate the phase matrix in only 1-row matrix 
    nn=0; 
    for ii=1:N 
        for jj=1:N 
            nn=nn+1; 
            phi2(nn)=phi(ii,jj); 
        end 
    end 
         
    xx=0:length(phi2)-1; 



233 

    plot(xx,phi2);grid 
    title(['Fig #' num2str(figurecount) 'P1 Code Phase Shift']); 
    xlabel('i - index for phase change'); 
    ylabel('P1 Phase Shift - Theta'); 
    figurecount=figurecount+1;%increment figure index 
     
    %Now strip out points from I and Q to reconstruct phase shift.  
    %I(1:SAR:floor(size(I,2)/5)) selects a data points with the phase values corresponding to the original phase 
calculation,; 
    %by indexing SAR through the first one fifth of the vector computed by floor(size(I,)/5).  The vector was 
repeated five times. 
    signal=I(1:SAR*cpp:size(I,2))+j*Q(1:SAR*cpp:size(I,2)); 
     
    phase_signal=angle(signal);%determine the angle from the complex signal 
     
    % unwrap(I) corrects the radian phase angles in array I by adding multiples of ±2pi 
    % when absolute jumps between consecutive array elements are greater than pi radians. 
    unphase=unwrap(phase_signal); 
    figure (figurecount);%open new figure for plot 
    plot (unphase); 
    title(['Fig #' num2str(figurecount) ' P1 Code Phase Shift from I+jQ ']); 
    xlabel('i - index for phase change'); 
    ylabel('P4 Phase Shift - Theta'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
  
    
else 
    disp('Signal not plotted') 
    fprintf('\n\n') 
end 
     
% This section generates the files for analysis 
 
INP=IN';%transpose I with noise and P4 phase shift for text file 
QNP=QN';%transpose Q with noise and P4 phase shift for text file 
IPWONT=IPWON';%transpose I with phase without noise for text file 
QPWONT=QPWON';%transpose Q with phase without noise for text file 
 
% % save results in data files 
 
I= INP(:,1); 
Q=QNP(:,1); 
  
II= IPWONT(:,1); 
QQ=QPWONT(:,1); 
  
disp(' ') 
saveresult = input('Do you want to save the new signal (Y/y or N/n) ?','s'); 
 
if (saveresult == 'Y') | (saveresult =='y')  
    ff=floor(f/1e3); 
    ffs=floor(fs/1e3); 
    save(['P1_', num2str(ff), '_', num2str(ffs), '_', num2str(m), '_',num2str(cpp),'_',num2str(SNR_dB)],'I','Q'); 
    I=II; 
    Q=QQ; 



234 

    save(['P1_' num2str(ff) '_' num2str(ffs) '_' num2str(m) '_' num2str(cpp) '_s'],'I','Q'); 
    disp(' '); 
    disp(['Signal and noise save as :  P1_' num2str(ff) '_' num2str(ffs) '_' num2str(m) '_' num2str(cpp) '_' 
num2str(SNR_dB)]); 
    disp(['Signal only save as :         P1_' num2str(ff) '_' num2str(ffs) '_' num2str(m) '_' num2str(cpp) '_s']); 
    disp(['Directory:                       ' num2str(cd)]);  
else 
    disp(' ') 
    disp('Signal not saved') 
    fprintf('\n\n') 
end 
 
 



235 

%****************************************************************************** 
% p2.m 
% 
% Use:  Code to generated P2-coded signals 
% 
% Inputs:       Amplitud of the carrier signal 
%          Carrier signal frequency - f (Hz) 
%               Sampling frequency - fs (HZ) 
%               Desired SNR in dB 
%               Number of phases 
%               Number of cycles per phase 
%                
% 
%Output:        In-phase (I) and Quadarture (Q) components of the signal 
%               Plots 
% 
%July 18, 2002 
%Maj Fernando Taboada - Venezuelan Army 
%****************************************************************************** 
 
clear all; 
clc; 
disp('*******************************************'); 
disp('******************P2  CODE ******************'); 
disp('**********************************************'); 
 
%DEFAULT VARIABLES 
A=1;                          % Amplitude of CW 
f =1e3;                       % Carrier frequency  
fs =7e3;                      % Sample Rate  
SNR_dB = 0;                   %Signal to Noise Ratio 
scale=30;                     % Scaling for plotting time domain graphs 
j=sqrt(-1);                   % j 
m=8;                          % Number of code phases 
cpp = 1;                      %Number of cycles per phase 
 
% NEW INPUT  
newvar = 1; 
while newvar == 1; 
    disp(' ') 
    disp('WHICH PARAMETER DO YOU WANT TO SET ?  ') 
    disp(' ') 
    fprintf('1. Amplitude of the carrier signal - A= %g.\n', A) 
    fprintf('2. Carrier frequency - f (Hz) = %g.\n', f) 
    fprintf('3. Sampling frequency - fs (Hz)= %g.\n', fs) 
    fprintf('4. Signal to noise ratio - SNR_dB (dB) = %g.\n', SNR_dB) 
    fprintf('5. Number of phase codes - m = %g.\n', m) 
    fprintf('6. Number of cycles per phase - cpp = %g.\n', cpp) 
    fprintf('7. No changes\n') 
    disp(' ') 
    option= input('Select a option: '); 
     
    switch option 
    case 1 
        A=input('New amplitude of the carrier signal= ');  
    case 2 



236 

        f=input('New carrier frequency (Hz) = '); 
    case 3 
        fs=input('New sampling frequency (Hz)= '); 
    case 4 
       SNR_dB=input('New signal to noise ratio (dB)= '); 
    case 5 
        m=input('New number of phase codes ='); 
    case 6 
        cpp=input('New number of cycles per phase='); 
    case 7 
        newvar = 0; 
    end 
    clc; 
end 
 
SAR=ceil(fs/f);          % Sampling ratio 
tb=1/(fs);                   % Sampling period 
% Phase code for P2 from IEEE Internaltional Radar Conference Paper 
% SIDELOBE REDUCTION TECHNIQUES FOR POLYPHASE PULSE COMPRESSSION CODES 
% by Frank F. Kretshcmer and Laurence R. Welch.    
% 
 
N=m; 
 
%Creating the phase matrix 
 
for i=1:m 
    for j=1:m 
        phi(i,j)= (-pi/(2*N))*[2*i-1-N]*[2*j-1-N]; 
    end 
end 
 
 
 
% 
% This section generates I & Q without P2 phase shift and I & Q with Phase shift.  The signals are generated  
% five times by the outer loop.  The variable 'index' is used to generate a time vector for time domain plots.  
% The signal is generated at seven samples per phase change.    
 
index=0; 
for p=1:5 %Generate the signal five times and store sequentially in corresponding vectors 
    for i=1:m %Loop to shift phase  
        for j=1:m 
            for n=1:SAR*cpp                                           %Loop to increment time for single phase value. 
                I(index+1)=A*cos(2*pi*f*(n-1)*tb+phi(i,j)); %Calculate in phase component of signal with phase 
shift 
                IWO(index+1)=A*cos(2*pi*f*(n-1)*tb); % Calculate in phase component of signal without phase 
shift 
                Q(index+1)=A*sin(2*pi*f*(n-1)*tb+phi(i,j)); % Calculate quadrature component of signal with phase 
shift 
                QWO(index+1)=A*sin(2*pi*f*(n-1)*tb); %Calculate quadrature component of signal without phase 
shift 
                time(index+1)=index*tb; %time vector cumulation 
                index = index +1; 
            end 
        end 



237 

    end 
end 
 
%Power Spectral Density for I with phase shift & with WGN with Signal to noise ratios (SNR) = [0,-5,5,10,-
10,-20] 
%for loop makes calculations and plots for each value of SNR for WGN 
[a,b]=size(I); 
SNR=10^(SNR_dB/10); 
power=10*log10(A^2/(2*SNR));%calculate SNR in dB for WGN function 
noise=wgn(a,b,power);%calculate noise at specified SNR 
IN=I+noise;               %add noise to I with P2 phase shift 
IPWON=I;                %I with phase shift without noise 
QN=Q+noise;            %add noise to Q with P2 phase shift 
QPWON=Q;             %Q with phase shift without noise 
     
 
%******************************************************* 
%PLOTS 
%****************************************************** 
 
disp(' ') 
plt = input('Do you want to generate plots of the signal (Y/y or N/n) ?','s'); 
disp(' ') 
if (plt == 'Y') | (plt =='y') 
    disp(' ') 
    %Plot Power Spectral Density for I without phase shift 
    figurecount=1; %figurecount is plot index  
    figure (figurecount); % open new figure for plot 
    psd(IWO,[],fs); %Power Spectral Density of I without Phase shift 
    title([' PSD of I without Phase Shift or Noise']); 
    figurecount=figurecount+1; %increment figure count 
     
    %time domain plot of in phase signal I without phase shift 
    figure (figurecount); % open new figure for plot 
    % plot small portion of time domain signal I so that data will fit meaningfully in figure.   
    %floor(size(time,2)/scale) selects a small sample of the vectors to plot 
     
    plot (time(1:floor(size(time,2)/scale)),IWO(1:floor(size(time,2)/scale)));  
    title([' Time Domain of I without Phase Shift or Noise']); 
    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 
    grid on; 
    figurecount=figurecount+1; %increment figure index 
     
    %Power Spectral Density for I with phase shift 
    figure (figurecount); %open new figure for plot 
    psd(I,[],fs); %plot power spectral density of I with phase shift 
    title([' PSD of I Phase Shift & no Noise']); 
    figurecount=figurecount+1; %increment figure index 
    %time domain plot of in phase signal I with phase shift 
    figure (figurecount); %open new figure for plot 
      
    % plot small portion of time domain signal I so that data will fit meaningfully in figure.   
    %floor(size(time,2)/scale) selects a small sample of the vectors to plot 
    plot (time(1:floor(size(time,2)/scale)),I(1:floor(size(time,2)/scale))); 
    title([' Time Domain of I with Phase Shift & no Noise']); 



238 

    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
     
    %Plot PSD and Time Domain of I+ P2 Phase + WGN and Time Domain of I + P2 Phase 
     
    figure (figurecount);% open new figure for plot 
    psd(IN,[],fs);%plot PSD for specified noise SNR 
    title([' PSD of I with Phase Shift & Noise SNR=' num2str(10*log10(SNR))]); 
    figurecount=figurecount+1;%increment figure index 
     
    %plot time domain signal I with P2 phase shift and WGN at specified SNR 
    figure (figurecount);%open new figure for plot 
    plot(time(1:floor(size(time,2)/scale)),IN(1:floor(size(time,2)/scale))); 
    title([' Time Domain of I with Phase Shift & Noise SNR=' num2str(10*log10(SNR))]); 
    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
    figure (figurecount);% open new figure for plot 
    plot(time(1:floor(size(time,2)/scale)),IPWON(1:floor(size(time,2)/scale))); 
    title([' Time Domain of I with Phase Shift witoutout Noise']); 
    xlabel('{\itTime - Seconds} '); 
    ylabel ('Amplitude'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
  
     
    figure(figurecount);%open new figure for plot 
     
   %to concatenate the phase matrix in only 1-row matrix 
    nn=0; 
    for ii=1:N 
        for jj=1:N 
            nn=nn+1; 
            phi2(nn)=phi(ii,jj); 
        end 
    end 
    xx=0:length(phi2)-1; 
    plot(xx,phi2);grid 
    title(['P2 Code Phase Shift']); 
    xlabel('i - index for phase change'); 
    ylabel('P2 Phase Shift - Theta'); 
    figurecount=figurecount+1;%increment figure index 
     
    %Now strip out points from I and Q to reconstruct phase shift.  
    %I(1:SAR:floor(size(I,2)/5)) selects a data points with the phase values corresponding to the original phase 
calculation,; 
    %by indexing SAR through the first one fifth of the vector computed by floor(size(I,)/5).  The vector was 
repeated five times. 
    signal=I(1:SAR*cpp:size(I,2))+j*Q(1:SAR*cpp:size(I,2)); 
     
    phase_signal=angle(signal);%determine the angle from the complex signal 



239 

     
    % unwrap(I) corrects the radian phase angles in array I by adding multiples of ±2pi 
    % when absolute jumps between consecutive array elements are greater than pi radians. 
    unphase=unwrap(phase_signal); 
    figure (figurecount);%open new figure for plot 
    plot (unphase); 
    title([' P2 Code Phase Shift from I+jQ ']); 
    xlabel('i - index for phase change'); 
    ylabel('P2 Phase Shift - Theta'); 
    grid on; 
 
  
    
else 
    disp('Signal not plotted') 
    fprintf('\n\n') 
end 
     
% This section generates the files for analysis 
 
INP=IN';%transpose I with noise and P2 phase shift for text file 
QNP=QN';%transpose Q with noise and P2 phase shift for text file 
IPWONT=IPWON';%transpose I with phase without noise for text file 
QPWONT=QPWON';%transpose Q with phase without noise for text file 
 
% % save results in data files 
I= INP(:,1); 
Q=QNP(:,1); 
  
II= IPWONT(:,1); 
QQ=QPWONT(:,1); 
  
disp(' ') 
saveresult = input('Do you want to save the new signal (Y/y or N/n) ?','s'); 
 
if (saveresult == 'Y') | (saveresult =='y')  
    ff=floor(f/1e3); 
    ffs=floor(fs/1e3); 
     save(['P2_', num2str(ff), '_', num2str(ffs), '_', num2str(m), '_',num2str(cpp),'_',num2str(SNR_dB)],'I','Q'); 
    I=II; 
    Q=QQ; 
    save(['P2_' num2str(ff) '_' num2str(ffs) '_' num2str(m) '_' num2str(cpp) '_s'],'I','Q'); 
    disp(' '); 
    disp(['Signal and noise save as :  P2_' num2str(ff) '_' num2str(ffs) '_' num2str(m) '_' num2str(cpp) '_' 
num2str(SNR_dB)]); 
    disp(['Signal only save as :         P2_' num2str(ff) '_' num2str(ffs) '_' num2str(m) '_' num2str(cpp) '_s']); 
    disp(['Directory:                       ' num2str(cd)]);  
else 
    disp(' ') 
    disp('Signal not saved') 
    fprintf('\n\n') 
end 



240 

%****************************************************************************** 
% p3.m 
% 
% Use:  Code to generated P3-coded signals 
% 
% Inputs:       Amplitud of the carrier signal 
%          Carrier signal frequency - f (Hz) 
%               Sampling frequency - fs (HZ) 
%               Desired SNR in dB 
%               Number of phases 
%               Number of cycles per phase 
%                
% 
%Output:        In-phase (I) and Quadarture (Q) components of the signal 
%               Plots 
% 
%May 1, 2002 
%Maj Fernando Taboada - Venezuelan Army 
%****************************************************************************** 
 
clear all; 
clc; 
disp('*******************************************'); 
disp('******************P3  CODE ******************'); 
disp('**********************************************'); 
 
%DEFAULT VARIABLES 
A=1;                          % Amplitude of CW 
f =1e3;                       % Carrier frequency  
fs =7e3;                      % Sample Rate  
SNR_dB = 0;                   %Signal to Noise Ratio 
scale=30;                     % Scaling for plotting time domain graphs 
j=sqrt(-1);                   % j 
m=64;                         % Number of code phases 
cpp = 1;                      %Number of cycles per phase 
 
% NEW INPUT  
newvar = 1; 
while newvar == 1; 
    disp(' ') 
    disp('WHICH PARAMETER DO YOU WANT TO SET ?  ') 
    disp(' ') 
    fprintf('1. Amplitude of the carrier signal - A= %g.\n', A) 
    fprintf('2. Carrier frequency - f (Hz) = %g.\n', f) 
    fprintf('3. Sampling frequency - fs (Hz)= %g.\n', fs) 
    fprintf('4. Signal to noise ratio - SNR_dB (dB) = %g.\n', SNR_dB) 
    fprintf('5. Number of phase codes - m = %g.\n', m) 
    fprintf('6. Number of cycles per phase - cpp = %g.\n', cpp) 
    fprintf('7. No changes\n') 
    disp(' ') 
    option= input('Select a option: '); 
     
    switch option 
    case 1 
        A=input('New amplitude of the carrier signal= ');  
    case 2 



241 

        f=input('New carrier frequency (Hz) = '); 
    case 3 
        fs=input('New sampling frequency (Hz)= '); 
    case 4 
       SNR_dB=input('New signal to noise ratio (dB)= '); 
    case 5 
        m=input('New number of phase codes ='); 
    case 6 
        cpp=input('New number of cycles per phase='); 
    case 7 
        newvar = 0; 
    end 
    clc; 
end 
 
SAR=ceil(fs/f);          % Sampling ratio 
tb=1/(fs);                   % Sampling period 
 
for k = 1:m 
    phase(k)=(pi/m)*(k-1)*(k-1); %Compute the P3 Phase 
end 
 
 
% 
% This section generates I & Q without P3 phase shift and I & Q with Phase shift.  The signals are generated  
% five times by the outer loop.  The variable 'index' is used to generate a time vector for time domain plots.  
% The signal is generated at seven samples per phase change.    
 
index=0; 
for p=1:5 %Generate the signal five times and store sequentially in corresponding vectors 
for l=1:m %Loop to shift phase  
    for n=1:SAR*cpp %Loop to increment time for single phase value. 
     I(index+1)=A*cos(2*pi*f*(n-1)*tb+phase(l)); %Calculate in phase component of signal with phase shift 
    IWO(index+1)=A*cos(2*pi*f*(n-1)*tb); % Calculate in phase component of signal without phase shift 
    Q(index+1)=A*sin(2*pi*f*(n-1)*tb+phase(l)); % Calculate quadrature component of signal with phase shift 
    QWO(index+1)=A*sin(2*pi*f*(n-1)*tb); %Calculate quadrature component of signal without phase shift 
    time(index+1)=index*tb; %time vector cumulation 
    index = index +1; 
    end 
end 
end 
 
%Power Spectral Density for I with phase shift & with WGN with Signal to noise ratios (SNR) = [0,-5,5,10,-
10,-20] 
%for loop makes calculations and plots for each value of SNR for WGN 
[a,b]=size(I); 
SNR=10^(SNR_dB/10); 
power=10*log10(A^2/(2*SNR));%calculate SNR in dB for WGN function 
noise=wgn(a,b,power);%calculate noise at specified SNR 
IN=I+noise;               %add noise to I with P3 phase shift 
IPWON=I;                %I with phase shift without noise 
QN=Q+noise;            %add noise to Q with P3 phase shift 
QPWON=Q;             %Q with phase shift without noise 
     
 
%******************************************************* 



242 

%PLOTS 
%****************************************************** 
 
disp(' ') 
plt = input('Do you want to generate plots of the signal (Y/y or N/n) ?','s'); 
disp(' ') 
if (plt == 'Y') | (plt =='y') 
    disp(' ') 
    %Plot Power Spectral Density for I without phase shift 
    figurecount=1; %figurecount is plot index  
    figure (figurecount); % open new figure for plot 
    psd(IWO,[],fs); %Power Spectral Density of I without Phase shift 
    title([' PSD of I without Phase Shift or Noise']); 
    figurecount=figurecount+1; %increment figure count 
     
    %time domain plot of in phase signal I without phase shift 
    figure (figurecount); % open new figure for plot 
    % plot small portion of time domain signal I so that data will fit meaningfully in figure.   
    %floor(size(time,2)/scale) selects a small sample of the vectors to plot 
     
    plot (time(1:floor(size(time,2)/scale)),IWO(1:floor(size(time,2)/scale)));  
    title([' Time Domain of I without Phase Shift or Noise']); 
    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 
    grid on; 
    figurecount=figurecount+1; %increment figure index 
     
    %Power Spectral Density for I with phase shift 
    figure (figurecount); %open new figure for plot 
    psd(I,[],fs); %plot power spectral density of I with phase shift 
    title([' PSD of I Phase Shift & no Noise']); 
    figurecount=figurecount+1; %increment figure index 
    %time domain plot of in phase signal I with phase shift 
    figure (figurecount); %open new figure for plot 
      
    % plot small portion of time domain signal I so that data will fit meaningfully in figure.   
    %floor(size(time,2)/scale) selects a small sample of the vectors to plot 
    plot (time(1:floor(size(time,2)/scale)),I(1:floor(size(time,2)/scale))); 
    title([' Time Domain of I with Phase Shift & no Noise']); 
    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
     
    %Plot PSD and Time Domain of I+ P3 Phase + WGN and Time Domain of I + P1 Phase 
     
    figure (figurecount);% open new figure for plot 
    psd(IN,[],fs);%plot PSD for specified noise SNR 
    title([' PSD of I with Phase Shift & Noise SNR=' num2str(10*log10(SNR))]); 
    figurecount=figurecount+1;%increment figure index 
     
    %plot time domain signal I with P1 phase shift and WGN at specified SNR 
    figure (figurecount);%open new figure for plot 
    plot(time(1:floor(size(time,2)/scale)),IN(1:floor(size(time,2)/scale))); 
    title([' Time Domain of I with Phase Shift & Noise SNR=' num2str(10*log10(SNR))]); 



243 

    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
    figure (figurecount);% open new figure for plot 
    plot(time(1:floor(size(time,2)/scale)),IPWON(1:floor(size(time,2)/scale))); 
    title([' Time Domain of I with Phase Shift witoutout Noise']); 
    xlabel('{\itTime - Seconds} '); 
    ylabel ('Amplitude'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
    % Now check to see if signal is correct by plotting phase shift alone and then determining phase shift from 
I+jQ. 
    % To determine phase shift, look at the phase angle of I+jQ at every 7th time interval.  Expect to see the P3 
phase 
    % function plot repeated 5 times after unwrapping and detrending the phase angle. 
     
    xx=0:length(phase)-1; 
    figure(figurecount);%open new figure for plot 
    plot(xx,phase); 
    title(['P3 Code Phase Shift']); 
    xlabel('i - index for phase change'); 
    ylabel('Frank Phase Shift - Theta'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
     
     
    %Now strip out points from I and Q to reconstruct phase shift.  
    %I(1:SAR:floor(size(I,2)/5)) selects a data points with the phase values corresponding to the original phase 
calculation,; 
    %by indexing SAR through the first one fifth of the vector computed by floor(size(I,)/5).  The vector was 
repeated five times. 
    signal=I(1:SAR*cpp:size(I,2))+j*Q(1:SAR*cpp:size(I,2)); 
     
    phase_signal=angle(signal);%determine the angle from the complex signal 
     
    % unwrap(I) corrects the radian phase angles in array I by adding multiples of ±2pi 
    % when absolute jumps between consecutive array elements are greater than pi radians. 
    unphase=unwrap(phase_signal); 
    figure (figurecount);%open new figure for plot 
    plot (unphase); 
    title([' P3 Code Phase Shift from I+jQ ']); 
    xlabel('i - index for phase change'); 
    ylabel('P3 Phase Shift - Theta'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
  
    
else 
    disp('Signal not plotted') 
    fprintf('\n\n') 
end 
     



244 

% This section generates the files for analysis 
 
INP=IN';%transpose I with noise and P3 phase shift for text file 
QNP=QN';%transpose Q with noise and P3 phase shift for text file 
IPWONT=IPWON';%transpose I with phase without noise for text file 
QPWONT=QPWON';%transpose Q with phase without noise for text file 
 
% % save results in data files 
 
I= INP(:,1); 
Q=QNP(:,1); 
  
II= IPWONT(:,1); 
QQ=QPWONT(:,1); 
  
disp(' ') 
saveresult = input('Do you want to save the new signal (Y/y or N/n) ?','s'); 
 
if (saveresult == 'Y') | (saveresult =='y')  
    ff=floor(f/1e3); 
    ffs=floor(fs/1e3); 
     save(['P3_', num2str(ff), '_', num2str(ffs), '_', num2str(m), '_',num2str(cpp),'_',num2str(SNR_dB)],'I','Q'); 
    I=II; 
    Q=QQ; 
    save(['P3_' num2str(ff) '_' num2str(ffs) '_' num2str(m) '_' num2str(cpp) '_s'],'I','Q'); 
    disp(' '); 
    disp(['Signal and noise save as :  P3_' num2str(ff) '_' num2str(ffs) '_' num2str(m) '_' num2str(cpp) '_' 
num2str(SNR_dB)]); 
    disp(['Signal only save as :         P3_' num2str(ff) '_' num2str(ffs) '_' num2str(m) '_' num2str(cpp) '_s']); 
    disp(['Directory:                       ' num2str(cd)]);  
else 
    disp(' ') 
    disp('Signal not saved') 
    fprintf('\n\n') 
end 
 
 



245 

%****************************************************************************** 
% p4.m 
% 
% Use:  Code to generated P4-coded signals 
% 
% Inputs:       Amplitud of the carrier signal 
%          Carrier signal frequency - f (Hz) 
%               Sampling frequency - fs (HZ) 
%               Desired SNR in dB 
%               Number of phases 
%               Number of cycles per phase 
%                
% 
%Output:        In-phase (I) and Quadarture (Q) components of the signal 
%               Plots 
% 
%January 22, 2002 
%Maj Fernando Taboada - Venezuelan Army 
%****************************************************************************** 
 
clear all; 
clc; 
disp('*******************************************'); 
disp('*************POLIPHASE CODE (P4)*************'); 
disp('**********************************************'); 
 
%DEFAULT VARIABLES 
A=1;                          % Amplitude of CW 
f =1e3;                       % Carrier frequency  
fs =7e3;                      % Sample Rate  
SNR_dB = 0;             %Signal to Noise Ratio 
scale=30;                   % Scaling for plotting time domain graphs 
j=sqrt(-1);                  % j 
m=64;                        % Number of code phases 
cpp = 1;                     %Number of cycles per phase 
 
% NEW INPUT  
newvar = 1; 
while newvar == 1; 
    disp(' ') 
    disp('WHICH PARAMETER DO YOU WANT TO SET ?  ') 
    disp(' ') 
    fprintf('1. Amplitude of the carrier signal - A= %g.\n', A) 
    fprintf('2. Carrier frequency - f (Hz) = %g.\n', f) 
    fprintf('3. Sampling frequency - fs (Hz)= %g.\n', fs) 
    fprintf('4. Signal to noise ratio - SNR_dB (dB) = %g.\n', SNR_dB) 
    fprintf('5. Number of phase codes - m = %g.\n', m) 
    fprintf('6. Number of cycles per phase - cpp = %g.\n', cpp) 
    fprintf('7. No changes\n') 
    disp(' ') 
    option= input('Select a option: '); 
     
    switch option 
    case 1 
        A=input('New amplitude of the carrier signal= ');  
    case 2 



246 

        f=input('New carrier frequency (Hz) = '); 
    case 3 
        fs=input('New sampling frequency (Hz)= '); 
    case 4 
       SNR_dB=input('New signal to noise ratio (dB)= '); 
    case 5 
        m=input('New number of phase codes ='); 
    case 6 
        cpp=input('New number of cycles per phase='); 
    case 7 
        newvar = 0; 
    end 
    clc; 
end 
 
SAR=ceil(fs/f);          % Sampling ratio 
tb=1/(fs);                   % Sampling period 
% Phase code for P4 from IEEE Internaltional Radar Conference Paper 
% SIDELOBE REDUCTION TECHNIQUES FOR POLYPHASE PULSE COMPRESSSION CODES 
% by Frank F. Kretshcmer and Laurence R. Welch.    
% 
 
for k = 1:m 
    phase(k)=((pi/m)*(k-1)^2)-(pi*(k-1)); %Compute the P4 Phase 
end 
% 
% This section generates I & Q without P4 phase shift and I & Q with Phase shift.  The signals are generated  
% five times by the outer loop.  The variable 'index' is used to generate a time vector for time domain plots.  
% The signal is generated at seven samples per phase change.    
 
index=0; 
for p=1:5 %Generate the signal five times and store sequentially in corresponding vectors 
for l=1:m %Loop to shift phase  
    for n=1:SAR*cpp %Loop to increment time for single phase value. 
     I(index+1)=A*cos(2*pi*f*(n-1)*tb+phase(l)); %Calculate in phase component of signal with phase shift 
    IWO(index+1)=A*cos(2*pi*f*(n-1)*tb); % Calculate in phase component of signal without phase shift 
    Q(index+1)=A*sin(2*pi*f*(n-1)*tb+phase(l)); % Calculate quadrature component of signal with phase shift 
    QWO(index+1)=A*sin(2*pi*f*(n-1)*tb); %Calculate quadrature component of signal without phase shift 
    time(index+1)=index*tb; %time vector cumulation 
    index = index +1; 
    end 
end 
end 
 
%Power Spectral Density for I with phase shift & with WGN with Signal to noise ratios (SNR) = [0,-5,5,10,-
10,-20] 
%for loop makes calculations and plots for each value of SNR for WGN 
[a,b]=size(I); 
SNR=10^(SNR_dB/10); 
power=10*log10(A^2/(2*SNR));%calculate SNR in dB for WGN function 
noise=wgn(a,b,power);%calculate noise at specified SNR 
IN=I+noise;               %add noise to I with P4 phase shift 
IPWON=I;                %I with phase shift without noise 
QN=Q+noise;            %add noise to Q with P4 phase shift 
QPWON=Q;             %Q with phase shift without noise 
     



247 

 
%******************************************************* 
%PLOTS 
%****************************************************** 
 
disp(' ') 
plt = input('Do you want to generate plots of the signal (Y/y or N/n) ?','s'); 
disp(' ') 
if (plt == 'Y') | (plt =='y') 
    disp(' ') 
    %Plot Power Spectral Density for I without phase shift 
    figurecount=1; %figurecount is plot index  
    figure (figurecount); % open new figure for plot 
    psd(IWO,[],fs); %Power Spectral Density of I without Phase shift 
    title([' PSD of I without Phase Shift or Noise']); 
    figurecount=figurecount+1; %increment figure count 
     
    %time domain plot of in phase signal I without phase shift 
    figure (figurecount); % open new figure for plot 
    % plot small portion of time domain signal I so that data will fit meaningfully in figure.   
    %floor(size(time,2)/scale) selects a small sample of the vectors to plot 
     
    plot (time(1:floor(size(time,2)/scale)),IWO(1:floor(size(time,2)/scale)));  
    title([' Time Domain of I without Phase Shift or Noise']); 
    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 
    grid on; 
    figurecount=figurecount+1; %increment figure index 
     
    %Power Spectral Density for I with phase shift 
    figure (figurecount); %open new figure for plot 
    psd(I,[],fs); %plot power spectral density of I with phase shift 
    title([' PSD of I Phase Shift & no Noise']); 
    figurecount=figurecount+1; %increment figure index 
    %time domain plot of in phase signal I with phase shift 
    figure (figurecount); %open new figure for plot 
      
    % plot small portion of time domain signal I so that data will fit meaningfully in figure.   
    %floor(size(time,2)/scale) selects a small sample of the vectors to plot 
    plot (time(1:floor(size(time,2)/scale)),I(1:floor(size(time,2)/scale))); 
    title([' Time Domain of I with Phase Shift & no Noise']); 
    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
     
    %Plot PSD and Time Domain of I+ P4 Phase + WGN and Time Domain of I + P4 Phase 
     
    figure (figurecount);% open new figure for plot 
    psd(IN,[],fs);%plot PSD for specified noise SNR 
    title([' PSD of I with Phase Shift & Noise SNR=' num2str(10*log10(SNR))]); 
    figurecount=figurecount+1;%increment figure index 
     
    %plot time domain signal I with P4 phase shift and WGN at specified SNR 
    figure (figurecount);%open new figure for plot 



248 

    plot(time(1:floor(size(time,2)/scale)),IN(1:floor(size(time,2)/scale))); 
    title([' Time Domain of I with Phase Shift & Noise SNR=' num2str(10*log10(SNR))]); 
    xlabel('{\itTime - Seconds} ');  
    ylabel('Amplitude'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
    figure (figurecount);% open new figure for plot 
    plot(time(1:floor(size(time,2)/scale)),IPWON(1:floor(size(time,2)/scale))); 
    title([' Time Domain of I with Phase Shift witoutout Noise']); 
    xlabel('{\itTime - Seconds} '); 
    ylabel ('Amplitude'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
     
    % Now check to see if signal is correct by plotting phase shift alone and then determining phase shift from 
I+jQ. 
    % To determine phase shift, look at the phase angle of I+jQ at every 7th time interval.  Expect to see the P4 
phase 
    % function plot repeated 5 times after unwrapping and detrending the phase angle. 
     
    xx=0:length(phase)-1; 
    figure(figurecount);%open new figure for plot 
    plot(xx,phase); 
    title(['P4 Phase Shift']); 
    xlabel('i - index for phase change'); 
    ylabel('P4 Phase Shift - Theta'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
    %Now strip out points from I and Q to reconstruct phase shift.  
    %I(1:SAR:floor(size(I,2)/5)) selects a data points with the phase values corresponding to the original phase 
calculation,; 
    %by indexing SAR through the first one fifth of the vector computed by floor(size(I,)/5).  The vector was 
repeated five times. 
    signal=I(1:SAR*cpp:size(I,2))+j*Q(1:SAR*cpp:size(I,2)); 
     
    phase_signal=angle(signal);%determine the angle from the complex signal 
     
    % unwrap(I) corrects the radian phase angles in array I by adding multiples of ±2pi 
    % when absolute jumps between consecutive array elements are greater than pi radians. 
    unphase=unwrap(phase_signal); 
    figure (figurecount);%open new figure for plot 
    plot (unphase); 
    title([' P4 Phase Shift from I+jQ ']); 
    xlabel('i - index for phase change'); 
    ylabel('P4 Phase Shift - Theta'); 
    grid on; 
    figurecount=figurecount+1;%increment figure index 
  
    
else 
    disp('Signal not plotted') 
    fprintf('\n\n') 
end 
     
% This section generates the files for analysis 



249 

 
INP=IN';%transpose I with noise and P4 phase shift for text file 
QNP=QN';%transpose Q with noise and P4 phase shift for text file 
IPWONT=IPWON';%transpose I with phase without noise for text file 
QPWONT=QPWON';%transpose Q with phase without noise for text file 
 
% % save results in data files 
 
I= INP(:,1); 
Q=QNP(:,1); 
  
II= IPWONT(:,1); 
QQ=QPWONT(:,1); 
  
disp(' ') 
saveresult = input('Do you want to save the new signal (Y/y or N/n) ?','s'); 
 
if (saveresult == 'Y') | (saveresult =='y')  
    ff=floor(f/1e3); 
    ffs=floor(fs/1e3); 
     save(['P4_', num2str(ff), '_', num2str(ffs), '_', num2str(m), '_',num2str(cpp),'_',num2str(SNR_dB)],'I','Q'); 
    I=II; 
    Q=QQ; 
    save(['P4_' num2str(ff) '_' num2str(ffs) '_' num2str(m) '_' num2str(cpp) '_s'],'I','Q'); 
    disp(' '); 
    disp(['Signal and noise save as :  P4_' num2str(ff) '_' num2str(ffs) '_' num2str(m) '_' num2str(cpp) '_' 
num2str(SNR_dB)]); 
    disp(['Signal only save as :         P4_' num2str(ff) '_' num2str(ffs) '_' num2str(m) '_' num2str(cpp) '_s']); 
    disp(['Directory:                       ' num2str(cd)]);  
else 
    disp(' ') 
    disp('Signal not saved') 
    fprintf('\n\n') 
end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



250 

%****************************************************************************** 
% costas.m 
% 
% Use:  Code to generated Costas-coded signals 
% 
% Inputs:       Amplitud of the carrier signal 
%          Sampling frequency - fs (HZ) 
%               Desired SNR in dB 
%               Costas sequence 
%               Number of cycles per phase 
%                
% 
%Output:        In-phase (I) and Quadarture (Q) components of the signal 
%               Plots 
% 
%August 2, 2002 
%Maj Fernando Taboada - Venezuelan Army 
%****************************************************************************** 
 
clear all; 
clc; 
disp('*******************************************'); 
disp('***************COSTAS CODE ****************'); 
disp('**********************************************'); 
 
%DEFAULT VARIABLES 
A=1;                            % Amplitude of CW 
fs =15e3;                       % Sample Rate  
SNR_dB = 0;                     %Signal to Noise Ratio 
cpf=10;                         %Cycles per frequency (> 10) 
scale=30;                       % Scaling for plotting time domain graphs 
j=sqrt(-1);                     % j 
 
 
% NEW INPUT  
newvar = 1; 
while newvar == 1; 
    disp(' ') 
    disp('WHICH PARAMETER DO YOU WANT TO SET ?  ') 
    disp(' ') 
    fprintf('1. Amplitude of frequencies - A= %g.\n', A) 
    fprintf('2. Sampling frequency - fs (Hz)= %g.\n', fs) 
    fprintf('3. Signal to noise ratio - SNR_dB (dB) = %g.\n', SNR_dB) 
    fprintf('4. Cycles per frequency  = %g.\n', cpf) 
    fprintf('5. No changes\n') 
    disp(' ') 
    option= input('Select a option: '); 
     
    switch option 
    case 1 
        A=input('New amplitude of the carrier signal= ');  
    case 2 
        fs=input('New sampling frequency (Hz)= '); 
    case 3 
       SNR_dB=input('New signal to noise ratio (dB)= '); 
    case 4 



251 

       cpf=input('New number of cycles per frequency = '); 
    case 5 
        newvar = 0; 
    end 
    clc; 
end 
% FREQUENCY CHOICES 
newvar = 1; 
while newvar == 1; 
    disp(' ') 
    disp('WHICH FREQUENCY WOULD YOU LIKE TO USE ?  ') 
    disp(' ') 
    disp('1.       4, 7, 1, 6, 5, 2, 3 '); 
    disp('2.       2, 6, 3, 8, 7, 5, 1 '); 
    disp(' ') 
    optioN= input('Select an option: '); 
 
freq=[4 7 1 6 5 2 3;  
      2 6 3 8 7 5 1]*1000 
 
switch optioN 
    case 1 
        seq=freq(1,:); 
        fs=15e3; 
       
    case 2 
        seq=freq(2,:); 
        fs=17e3; 
 
    end 
    newvar=0; 
    clc; 
end 
     
 
minimum=min(seq); 
SAR=ceil(fs/minimum);          % Sampling ratio 
tb=1/(fs);                   % Sampling period 
 
 
% This section generates I & Q without COSTAS phase shift and I & Q with Phase shift.  The signals are 
generated  
% five times by the outer loop.  The variable 'index' is used to generate a time vector for time domain plots.  
% The signal is generated at seven samples per phase change.    
 
index=0; 
%for p=1:5 %Generate the signal five times and store sequentially in corresponding vectors 
    for xx=1:7 
        for n=1:SAR*cpf 
              
                I(index+1)=A*cos(2*pi*seq(xx)*(n-1)*tb);  
     
                Q(index+1)=A*sin(2*pi*seq(xx)*(n-1)*tb);  
     
                time(index+1)=index*tb; %time vector cumulation 
     



252 

                index = index +1; 
        end 
   end 
                      
   %end         
 
 
%Power Spectral Density for I with phase shift & with WGN with Signal to noise ratios  
%for loop makes calculations and plots for each value of SNR for WGN 
[a,b]=size(I); 
SNR=10^(SNR_dB/10); 
power=10*log10(A^2/(2*SNR));%calculate SNR in dB for WGN function 
noise=wgn(a,b,power);%calculate noise at specified SNR 
IN=I+noise;               %add noise to I with COSTAS phase shift 
IPWON=I;                %I with phase shift without noise 
QN=Q+noise;            %add noise to Q with COSTAS phase shift 
QPWON=Q;             %Q with phase shift without noise 
     
 
%******************************************************* 
%PLOTS 
%****************************************************** 
 
disp(' ') 
plt = input('Do you want to generate plots of the signal (Y/y or N/n) ?','s'); 
disp(' ') 
if (plt == 'Y') | (plt =='y') 
    disp(' ') 
     
    figurecount=1; 
    %Power Spectral Density for I with phase shift 
    figure (figurecount); %open new figure for plot 
    psd(I,[],fs); %plot power spectral density of I with phase shift 
    title(['Fig #' num2str(figurecount) ' PSD of I Phase Shift & no Noise']); 
     
    figurecount=figurecount+1; %increment figure index 
 
     
     
    %Plot PSD and Time Domain of I+ COSTAS Phase + WGN and Time Domain of I  
     
    figure (figurecount);% open new figure for plot 
    psd(IN,[],fs);%plot PSD for specified noise SNR 
    title(['Fig #' num2str(figurecount) ' PSD of I with Phase Shift & Noise SNR=' num2str(10*log10(SNR))]); 
    figurecount=figurecount+1;%increment figure index 
     
    
    
else 
    disp('Signal not plotted') 
    fprintf('\n\n') 
end 
     
% This section generates the files for analysis 
 
INP=IN';%transpose I with noise and COSTAS phase shift for text file 



253 

QNP=QN';%transpose Q with noise and COSTAS phase shift for text file 
IPWONT=IPWON';%transpose I with phase without noise for text file 
QPWONT=QPWON';%transpose Q with phase without noise for text file 
 
% % save results in data files 
 
I= INP(:,1); 
Q=QNP(:,1); 
  
II= IPWONT(:,1); 
QQ=QPWONT(:,1); 
  
disp(' ') 
saveresult = input('Do you want to save the new signal (Y/y or N/n) ?','s'); 
 
if (saveresult == 'Y') | (saveresult =='y')  
    ff=7; 
    ffs=floor(fs/1e3); 
    save(['C_' num2str(optioN) '_' num2str(ffs) '_' num2str(cpf) '_'num2str(SNR_dB)],'I','Q'); 
    I=II; 
    Q=QQ; 
    save(['C_' num2str(optioN) '_' num2str(ffs) '_' num2str(cpf) '_s'],'I','Q'); 
    disp(' '); 
    disp(['Signal and noise save as :  C_' num2str(optioN) '_' num2str(ffs) '_' num2str(cpf) 
'_'num2str(SNR_dB)]); 
    disp(['Signal only save as :         C_' num2str(optioN) '_' num2str(ffs) '_' num2str(cpf) '_s']); 
    disp(['Directory:                       ' num2str(cd)]);  
else 
    disp(' ') 
    disp('Signal not saved') 
    fprintf('\n\n') 
end 



254 

%****************************************************************************** 
% test_signal.m 
% 
% Use:  Code to generated a single tone test signals 
% 
% Inputs:       Amplitud of the carrier signal 
%          Carrier signal frequency - f (Hz) 
%               Sampling frequency - fs (HZ) 
%                
%                
%                
%                
% 
%Output:        In-phase (I) and Quadarture (Q) components of the signal 
%               Plots 
% 
%January 18, 2002 
%Maj Fernando Taboada - Venezuelan Army 
%****************************************************************************** 
 
 
clear all; 
clc; 
disp('*******************************************'); 
disp('*****************TEST SIGNAL*****************'); 
disp('**********************************************'); 
 
%MAIN MENU 
disp(' ') 
disp('WHAT KIND OF TEST SIGNAL DO YOU WANT TO GENERATE ?  ') 
disp(' ') 
disp('1. Test signal with a single frequency '); 
disp('2. Test signal with two frequencies '); 
disp('3. Go back to LPI Generator '); 
disp(' ') 
option= input('Select a option: '); 
 
%AMPLITUDE IN VOLTS 
A = 1;          
 
%MENU FOR SINGLE FREQUENCY TEST SIGNAL 
switch option    
    case 1 
       disp(' '); 
       disp('You have selected a Test signal with a single frequency'); 
       disp(' '); 
                f1 = input('Enter carrier frequency - f1(Hz): '); 
                fs = input('Enter sampling frequency - fs (Hz): '); 
                T=1/fs; 
                t=0:T:100*T; 
                s = A*cos(2*pi*f1*t) + j*A*sin(2*pi*f1*t); 
                figure 
                hold; 
                plot(t(1:10),real(s(1:10))); 
                plot(t(1:10),imag(s(1:10)),'r');grid; 



255 

                title(['Test Signal S(t) = Cos[2(pi)(f1)t] + jSin[2(pi)(f1)t], frequency (f1) =' num2str(f1) ' Sampling 
Frequency(fs)=' num2str(fs) ]); 
                xlabel('{\itTime - Seconds} ');  
                ylabel('Amplitude'); 
                legend('Real Part', 'Imag. Part'); 
                hold; 
                figure; 
                psd(s,[],fs) 
                title('Power Spectral Density'); 
 
            disp(' ') 
            saveresult = input('Do you want to save the new signal (Y/y or N/n) ?','s'); 
            if (saveresult == 'Y') | (saveresult =='y')  
                I = real(s); 
                Q = imag(s); 
                 
                ff=floor(f1/1e3); 
                ffs=floor(fs/1e3); 
                save(['T_' num2str(ff) '_' num2str(ffs) '_1_s'],'I','Q'); 
                disp('The signals has been saved'); 
                disp(' '); 
                disp(['Signal only save as :         T_' num2str(ff) '_' num2str(ffs) '_1_s']); 
                disp(['Directory:                       ' num2str(cd)]);  
            else 
                disp(' ') 
                disp('Signal not saved') 
                fprintf('\n\n') 
            end 
  
             
   %MENU FOR TWO FREQUENCY TEST SIGNAL          
   case 2 
       disp('You have selected Test signal with two frequencies');  
       disp(' '); 
                f1 = input('Enter carrier frequency - f1 (Hz): '); 
                f2 = input('Enter carrier frequency - f2 (Hz): '); 
                fs = input('Enter sampling frequency - fs (Hz): '); 
                T=1/fs; 
                t=0:T:100*T; 
                s = cos(2*pi*f1*t) + j*sin(2*pi*f1*t) + cos(2*pi*f2*t) + j*sin(2*pi*f2*t); 
                figure 
                hold; 
                plot(t(1:10),real(s(1:10))); 
                plot(t(1:10),imag(s(1:10)),'r');grid; 
                title(['Test Signal S(t) = Cos[2(pi)(f1)t] + jSin[2(pi)(f1)t] + Cos[2(pi)(f2)t] + jSin[2(pi)(f2)t], f1 =' 
num2str(f1) ' f2=' num2str(f2) ' fs=' num2str(fs) ]); 
                xlabel('{\itTime - Seconds} ');  
                ylabel('Amplitude'); 
                legend('Real Part', 'Imag. Part'); 
                hold; 
                figure; 
                psd(s,[],fs) 
                title('Power Spectral Density'); 
            disp(' ') 
            saveresult = input('Do you want to save the new signal (Y/y or N/n) ?','s'); 
            if (saveresult == 'Y') | (saveresult =='y')  



256 

               I = real(s); 
               Q = imag(s); 
                ff=floor(f1/1e3); 
                fff=floor(f2/1e3); 
                ffs=floor(fs/1e3); 
                save(['T_' num2str(ff)num2str(fff) '_' num2str(ffs) '_2_s'],'I','Q'); 
                disp('The signals has been saved'); 
                disp(' '); 
                disp(['Signal only save as :         T_' num2str(ff)num2str(fff) '_' num2str(ffs) '_2_s']); 
                disp(['Directory:                       ' num2str(cd)]);  
            else 
                disp(' ') 
                disp('Signal not saved') 
                fprintf('\n\n') 
            end 
             
                  
    case 3 
        LPI_signal_generator; 
    end 
    
     

 
 
 
 
 
 

 

 

 

 

 

 

 

 



257 

APPENDIX B.  MATLAB® PROGRAM FOR PARALLEL FILTER 
AND HOS 

 
%****************************************************************************** 
% hos_gui_1.m 
% 
% Use:  This program creates a GUI for the implementation of parallel filter 
%       array and HOS 
% 
% Inputs:       File name 
%               Directory 
%               Sampling frequency 
%               Number of filters in bank 
% 
%Output:        Four (04) plots: 
%               1. After parallel filter arrays 
%               2. After HOS 
%               3. Amplitude-filter view 
%               4. Amplitude-frequency view 
% 
%July 5, 2002 
%Maj Fernando Taboada - Venezuelan Army 
%****************************************************************************** 
 
 
function varargout = HOS_gui_1(varargin) 
% HOS_GUI_1 Application M-file for HOS_gui_1.fig 
%    FIG = HOS_GUI_1 launch HOS_gui_1 GUI. 
%    HOS_GUI_1('callback_name', ...) invoke the named callback. 
 
% Last Modified by GUIDE v2.0 23-Apr-2002 14:17:40 
 
if nargin == 0  % LAUNCH GUI 
 
 fig = openfig(mfilename,'reuse'); 
 
 % Use system color scheme for figure: 
 set(fig,'Color',get(0,'defaultUicontrolBackgroundColor')); 
 
 % Generate a structure of handles to pass to callbacks, and store it.  
 handles = guihandles(fig); 
 guidata(fig, handles); 
 
 if nargout > 0 
  varargout{1} = fig; 
 end 
 
elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK 
 
 try 
  if (nargout) 
   [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard 



258 

  else 
   feval(varargin{:}); % FEVAL switchyard 
  end 
 catch 
  disp(lasterr); 
 end 
 
end 
 
% -------------------------------------------------------------------- 
function varargout = edit1_Callback(h, eventdata, handles, varargin) 
name = get(h,'String'); 
handles.edit1 = name; % Save file name in global variable handles.edit1 (filename = handles.edit1) 
     
if isstr(name) 
else 
    errordlg('Filename: Please enter a valid file name (B_1_7_7_s is default)', 'Bad input', 'modal') 
end 
     
guidata(h,handles); 
 
 
 
% -------------------------------------------------------------------- 
function varargout = edit2_Callback(h, eventdata, handles, varargin) 
 
 
d = get(h,'String'); 
handles.edit3 = d; % Save file name in global variable handles.edit1 (filename = handles.edit1) 
 
  
guidata(h,handles); 
 
 
% -------------------------------------------------------------------- 
function varargout = edit3_Callback(h, eventdata, handles, varargin) 
fs = str2double(get(h,'String')); 
handles.edit2 = fs;% Save sampling frequency in global variable handles.edit2 (fs = handles.edit2) 
 
if isnan(fs) 
    errordlg('Sampling Frequency: Please enter a numeric value (Hz)', 'Bad input', 'modal') 
end 
    
guidata(h,handles); 
 
 
 
% -------------------------------------------------------------------- 
function varargout = popupmenu1_Callback(h, eventdata, handles, varargin) 
val = get(h,'Value'); 
switch val 
case 1 
    handles.popupmenu3 = 32;% Save frequency resolution in global variable handles.popupmenu3 (df = 
handles.popupmenu3) 
 
case 2 



259 

    handles.popupmenu3 = 64;% Save frequency resolution in global variable handles.popupmenu3 (df = 
handles.popupmenu3) 
 
case 3 
    handles.popupmenu3 = 128;% Save frequency resolution in global variable handles.popupmenu3 (df = 
handles.popupmenu3) 
     
end 
% More options may be added following the same pattern. 
     
guidata(h,handles); 
 
 
 
% -------------------------------------------------------------------- 
function varargout = pushbutton1_Callback(h, eventdata, handles, varargin) 
 
taboada_HOS_gui  
 
 
 
 
 
%****************************************************************************** 
% taboada_HOS.m 
% 
% Use:  Implementation of parallel filter 
%       array and HOS 
% 
% Inputs:       None (parameters entered in GUI)    
%                
%                
%                
% 
%Output:        Four (04) plots: 
%               1. After parallel filter arrays 
%               2. After HOS 
%               3. Amplitude-filter view 
%               4. Amplitude-frequency view 
% 
%July 5, 2002 
%Maj Fernando Taboada - Venezuelan Army 
%****************************************************************************** 
 
%This code was written to realize the detection outlined in the  
%paper "On Detection Using Filter Banks and HOS" 
% by Farook Sattar and Goran Salononsson.  
 
clc; 
disp('Executing.....') 
 
%load data from file and GUI 
L=  handles.popupmenu3; 
fs=handles.edit2; 
d=handles.edit3; 
cd(d); 



260 

name= handles.edit1; 
load (name) 
 
 
 
 
%Now Build the real input 
X=I-j*Q; 
%Flip input around the hard way 
for i=1:length(X)-1; 
   x(1,i)=X(i); 
end; 
T=1/fs; 
f=0:fs/length(x):fs-fs/length(x);  %build the f vector 
t=0:T:(length(x)-1)*T; 
 
%Filter the input 2 times, one time with regular filter, then again with  
% filter that is Hilbert transform of the first filter. Next step is to  
% compare and combine the outputs.  
% Build first filter 
w=2*pi*f; 
wp=2*pi*fs/(2*L); 
qp=.707; 
k=1; 
s=j*w; 
num=k*wp^2; 
den=s.^2+(wp/qp).*s+wp^2; 
hf=num./den; 
fi=0; 
ht=ifft(hf); 
 
%Now set up input file for processing by  
%   1) zero pad input out to a lenth of input + length of filter -1 
%       This is done in order to prevent circular convolution 
%   2) Then take fft of input to bring it to frequency domain.  
zpad=zeros(1,length(ht)-1); 
xpad=[x,zpad]; 
xfd=fft(xpad); 
seqlen=length(xpad);    %set the length of the input sequence 
%now pad the filter with zeros to prevent circular convolution 
%This section defines the window and the N used for the  
%cumulant calculation 
K=2; 
windowlen=2*K+1; 
Wn=(blackman(windowlen))';      %get window function for Blackman window of length 2*K+1.  
 
flagval=0; 
 
for index=0:L-1 
 %Bring filter to time domain 
 %Convert to bandpass filter with pass band = fi 
   %Make sure to use zero pad to avoid circular convolution 
   ht2=ht.*exp(j*2*pi*fi*t); 
   htpad=[ht2,zpad]; 
   hcosine=real(htpad);      %cosine filter 
   hsine=imag(htpad);        %sine filter 



261 

 
 % Get first output 
 %Bring input signal and filter to Freq domain and filter 
   hfbp=fft(hcosine); 
   %hbp(index+1,:)=hfbp;       %Remove comment if want to look at filter bank 
 yfd1=xfd.*hfbp;   
 %Go back to the time domain 
   yt1=ifft(yfd1); 
   y1(index+1,:)=(yt1);   % Save output before run cummulant.  
   Y1(index+1,:)=fft((yt1)); 
      
   %Now code 3rd order cumulator using  
   % the formula C(L1,L2,k)=(1/(S2-S1+1)*sum(zk(n)zk(n+L1)zk(n+L2))) 
   %      where zk(n) = z(n)w(n-k) where w(n-k) is taken as a Hamming Window.  
 %Equation 13 in the paper says that the 3rd order cumulant of the kth output is just 
   % row(k)=C3(0,0;k)-C3(-1,1;k) where C3 indicates cumulant 
   %Find C3(0,0;k) and C3(-1,1;k) 
   %First find C3(0,0,;k); 
   for k=2:seqlen; 
      L1=0; 
    L2=0; 
      S1=max([k-K,k-K-L1,k-K-L2]); 
      S2=min([k+K,k+K-L1,k+K-L2]); 
      Zsubn=0; 
      C3_0_0=0; 
      for n=S1:S2;%Now find zsubk(n)=z(n)*w(n-k), z(n) is input w(n-k) is window I built 
         %Basically have to run the window function on each z(n) value. 
         %Then sum up the values to find the zsubk I need.  
         %Plan is to get z(n-2), z(n-1), z(n), z(n+1), z(n+2) 
         %    run the window function on them, sum them and then take the cube 
         pindex=1; 
         for p=n-2:1:n+2;  %Get 5 values of input to running hamming window on 
            if p <= 0;     %This little if statement makes sure I stay within index 
             Zsubp(pindex)=0; 
          elseif p>seqlen; 
             Zsubp(pindex)=0; 
          else 
             Zsubp(pindex)=(yt1(p));    %Pick off the position I need 
          end; 
            pindex=pindex+1;          %gota keep my index going 
         end; 
         %Now run window function on that values I just found.  
         Zsubp=(Zsubp.*Wn); 
         Zsubk=(sum(Zsubp))^3;%sum values after window function and take cube 
         C3_0_0=C3_0_0+Zsubk;      %Cummulate my cumulant 
      end; 
      C3_0_0=C3_0_0*1/(S2-S1+1);   %Finish up cumulant calculation 
       
       
      %Now find the second part, C3(-1,1;k) 
     %Now find zsubk(n)=z(n)*w(n-k) z(n) is input w(n-k) is window I built 
      %Basically have to run the window function on each z(n) value. 
      %   Then sum up the values to find the zsubk I need.  
      %   Plan is to get z(n-2), z(n-1), z(n), z(n+1), z(n+2) 
      %   run the window function on them, sum them and then take the cube 
      %    then find zsubk(n-1) and zsubk(n+1) is a similar manner. 



262 

      L1=-1; 
      L2=1; 
      S1=max([k-K,k-K-L1,k-K-L2]); 
      S2=min([k+K,k+K-L1,k+K-L2]); 
      C3_1_1=0; 
      for n=S1:S2;  
         %Now find zsub(n) first;  
         pindex=1; 
         for p=n-2:1:n+2;  %Get 5 values of input to running hamming window on 
            if p <= 0;     %This little if statement makes sure I stay within index 
             Zsubp(pindex)=0; 
          elseif p>seqlen; 
             Zsubp(pindex)=0; 
          else 
             Zsubp(pindex)=(yt1(p));    %Pick off the position I need 
          end; 
            pindex=pindex+1;          %gota keep my index going 
         end; 
         %Now run window function on that values I just found.  
         Zsubp=(Zsubp.*Wn); 
         Zsubk=sum(Zsubp); 
         %Now find zsub(n-1) next:  
         pindex=1; 
         for p=n-3:1:n+1;  %Get 5 values of input to running hamming window on 
            if p <= 0;     %This little if statement makes sure I stay within index 
             Zsubp(pindex)=0; 
          elseif p>seqlen; 
             Zsubp(pindex)=0; 
          else 
             Zsubp(pindex)=(yt1(p));    %Pick off the position I need 
          end; 
            pindex=pindex+1;          %gota keep my index going 
         end; 
         %Now run window function on that values I just found.  
         Zsubp=(Zsubp.*Wn);  
         Zsubkm1=sum(Zsubp); 
         %Now find zsub(n+1);  
         pindex=1; 
         for p=n-1:1:n+3;  %Get 5 values of input to running hamming window on 
            if p <= 0;     %This little if statement makes sure I stay within index 
             Zsubp(pindex)=0; 
          elseif p>seqlen; 
             Zsubp(pindex)=0; 
          else 
             Zsubp(pindex)=(yt1(p));    %Pick off the position I need 
          end; 
            pindex=pindex+1;          %gota keep my index going 
         end; 
         %Now run window function on that values I just found.  
         Zsubp=(Zsubp.*Wn); 
         Zsubkp1=sum(Zsubp); 
         Zprod=Zsubk*Zsubkm1*Zsubkp1; 
         C3_1_1=C3_1_1+Zprod; 
          
         if (Zprod==0) 
            flagval=flagval+1; 



263 

         end; 
          
      end; 
      ThirdCum=C3_0_0-C3_1_1; 
      %Now save this value in position n of the output stream; 
      ycumout(k)=ThirdCum; 
       
   end; %end of for k:seqlenth;  
   YcumI(index+1,:)=ycumout; 
   %Get second output  
   hhfd=fft(hsine);       %goto Freq domain.  
   %Get the output 
   yfd2=xfd.*hhfd; 
 %Go back to the time domain 
 yt2=ifft(yfd2); 
 y2(index+1,:)=(yt2);       
   % Y2(index+1,:)=fft((yt2));   %Remove comment if want to see Freq domain 
      %Now code 3rd order cumulator using  
   % the formula C(L1,L2,k)=(1/(S2-S1+1)*sum(zk(n)zk(n+L1)zk(n+L2))) 
   %      where zk(n) = z(n)w(n-k) where w(n-k) is taken as a Hamming Window.  
 %Equation 13 in the paper says that the 3rd order cumulant of the kth output is just 
   % row(k)=C3(0,0;k)-C3(-1,1;k) where C3 indicates cumulant 
   %Find C3(0,0;k) and C3(-1,1;k) 
   %First find C3(0,0,;k); 
   for k=2:seqlen; 
      L1=0; 
    L2=0; 
      S1=max([k-K,k-K-L1,k-K-L2]); 
      S2=min([k+K,k+K-L1,k+K-L2]); 
      Zsubn=0; 
      C3_0_0=0; 
      for n=S1:S2;%Now find zsubk(n)=z(n)*w(n-k), z(n) is input w(n-k) is window I built 
         %Basically have to run the window function on each z(n) value. 
         %Then sum up the values to find the zsubk I need.  
         %Plan is to get z(n-2), z(n-1), z(n), z(n+1), z(n+2) 
         %    run the window function on them, sum them and then take the cube  
         pindex=1; 
         for p=n-2:1:n+2;  %Get 5 values of input to running hamming window on 
            if p <= 0;     %This little if statement makes sure I stay within index 
             Zsubp(pindex)=0; 
          elseif p>seqlen; 
             Zsubp(pindex)=0; 
          else 
             Zsubp(pindex)=(yt2(p));    %Pick off the position I need 
          end; 
            pindex=pindex+1;          %gota keep my index going 
         end; 
         %Now run window function on that values I just found.  
         Zsubp=(Zsubp.*Wn); 
         Zsubk=(sum(Zsubp))^3;     %sum values after window function and take cube 
         C3_0_0=C3_0_0+Zsubk;      %Cummulate my cumulant 
      end; 
      C3_0_0=C3_0_0*1/(S2-S1+1);   %Finish up cumulant calculation 
       
      %Now find the second part, C3(-1,1;k) 
     %Now find zsubk(n)=z(n)*w(n-k) z(n) is input w(n-k) is window I built 



264 

      %Basically have to run the window function on each z(n) value. 
      %   Then sum up the values to find the zsubk I need.  
      %   Plan is to get z(n-2), z(n-1), z(n), z(n+1), z(n+2) 
      %   run the window function on them, sum them and then take the cube 
      %    then find zsubk(n-1) and zsubk(n+1) is a similar manner. 
      L1=-1; 
      L2=1; 
      S1=max([k-K,k-K-L1,k-K-L2]); 
      S2=min([k+K,k+K-L1,k+K-L2]); 
      C3_1_1=0; 
      for n=S1:S2;  
         %Now find zsub(n) first;  
         pindex=1; 
         for p=n-2:1:n+2;  %Get 5 values of input to running hamming window on 
            if p <= 0;     %This little if statement makes sure I stay within index 
             Zsubp(pindex)=0; 
          elseif p>seqlen; 
             Zsubp(pindex)=0; 
          else 
             Zsubp(pindex)=(yt2(p));    %Pick off the position I need 
          end; 
            pindex=pindex+1;          %gota keep my index going 
         end; 
         %Now run window function on that values I just found.  
         Zsubp=(Zsubp.*Wn); 
         Zsubk=sum(Zsubp); 
         %Now find zsub(n-1) next:  
         pindex=1; 
         for p=n-3:1:n+1;  %Get 5 values of input to running hamming window on 
            if p <= 0;     %This little if statement makes sure I stay within index 
             Zsubp(pindex)=0; 
          elseif p>seqlen; 
             Zsubp(pindex)=0; 
          else 
             Zsubp(pindex)=(yt2(p));    %Pick off the position I need 
          end; 
            pindex=pindex+1;          %gota keep my index going 
         end; 
         %Now run window function on that values I just found.  
         Zsubp=(Zsubp.*Wn); 
         Zsubkm1=sum(Zsubp); 
         %Now find zsub(n+1);  
         pindex=1; 
         for p=n-1:1:n+3;  %Get 5 values of input to running hamming window on 
            if p <= 0;     %This little if statement makes sure I stay within index 
             Zsubp(pindex)=0; 
          elseif p>seqlen; 
             Zsubp(pindex)=0; 
          else 
             Zsubp(pindex)=(yt2(p));    %Pick off the position I need 
          end; 
            pindex=pindex+1;          %gota keep my index going 
         end; 
         %Now run window function on that values I just found.  
         Zsubp=(Zsubp.*Wn); 
         Zsubkp1=sum(Zsubp); 



265 

         Zprod=Zsubk*Zsubkm1*Zsubkp1; 
         C3_1_1=C3_1_1+Zprod; 
          
         if (Zprod==0) 
            flagval=flagval+1; 
         end; 
          
      end; 
      C3_1_1=C3_1_1*1/(S2-S1+1);   %Finish up cumulant calculation 
      ThirdCum=C3_0_0-C3_1_1; 
      %Now save this value in position n of the output stream; 
      ycumout2(k)=ThirdCum; 
 end; 
   YcumQ(index+1,:)=ycumout2; 
   fii(index+1)=fi;       %Build the subfilter frequency vector 
   fi=fi+fs/(2*(L)); 
 
 
end;  %end of for index:to sequenlen.  
y=y1+j*y2; 
yy=abs(y1)+abs(y2);     %to see what happens after filter bank  
% Y=Y1+Y2;               %Remove comment if want freq domain output 
Filterwidth = fs/(2*L);   %Subfilters Bandwidth 
Ycum=abs(YcumQ)+abs(YcumI); 
 
%Energy Factor 
 
for A=1:L 
    for B= 1:length(y) 
        if Ycum(A,B) < 0.025 
            Ycum_F(A,B)=0; 
        else 
            Ycum_F(A,B)=Ycum(A,B); 
        end 
    end 
end 
 
tiempo=0:1/fs:length(Ycum)/fs-1/fs; 
% %************************************** 
% %PLOTS 
% %************************************** 
 
%After filter Banks and Before Cumulants 
figure(1) 
mesh(abs(yy)); view(0,90); grid minor; 
title('Signal after Filter Bank (No Cumulants) '); 
xlabel('Samples'); 
ylabel(['Filter - Bandwidth: ', num2str(Filterwidth),' Hz']); 
 
%After Cumulants 
figure(2) 
mesh(tiempo,fii,abs(Ycum)); view(0,90); grid minor; 
title('Signal with Cumulator '); 
xlabel('Time (sec)'); 
ylabel(['Frequency (Hz) - Bandwidth: ', num2str(Filterwidth),' Hz']); 
 



266 

%Filter vs Amplitude 
figure(3) 
mesh(abs(Ycum)); grid minor 
view(90,0); 
title('Signal with Cumulator in Frequency Domain'); 
zlabel('Amplitude'); 
ylabel(['Filter - Bandwidth: ', num2str(Filterwidth),' Hz']); 
  
%Plot subfilters frequency vs. amplitude 
figure(4) 
plot(fii,abs(Ycum)); grid minor 
title('Signal with Cumulator in Frequency Domain'); 
xlabel('Frequency (Hz)'); 
ylabel('Amplitude'); 
 
cd('h:\thesis\code\Data\GUI') 



267 

GLOSSARY OF ACRONYMS 

ARM  Anti-Radiation Missile 

BPSK  Binary Phase Shift-Keying 

CW  Continuous Wave 

EA  Electronic Attack 

ES  Electronic Support 

FFT  Fast Fourier Transform 

FMCW Frequency Modulated Continuous Wave  

FSK  Frequency Shift Keying 

HOS  Higher Order Statistics 

I  In- phase component 

LPI  Low Probability of Intercept 

PAF  Periodic Ambiguity Function 

PDF  Probability Density Function 

PSK  Phase Shift Keying 

PSD  Power Spectral Density 

Q  Quadrature component 

RSR  Random-signal Radars 

RWR  Radar Warning Receiver 

SNR  Signal-to-noise Ratio 

WGN  White Gaussian Noise 

 

 



268 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



269 

LIST OF REFERENCES 

[1] . Pace, Phillip, “LPI Radar”, class notes, EC Network Centric Radar Electronic 

Warfare Techniques and Systems for International Students, Naval Postgraduate 

School, January, 2002. 

[2] . Adamy, Dave, “Advances in Signal Processing for Electronic Warfare”, September 

1995, retrieved from http://www.jedefense.com/default.asp?journalid=4.htm, 

accessed on 07/08/02. 

[3] . Klein, Lawrence A., “Millimeter-Wave and Infrared Multisensor Design and Signal 

Processing”, Artech House, Inc, 1997. 

[4] . Currier, Walter, “Digital Receivers”, Naval Postgraduate School, EC4700,  June 

2001. 

[5] . Arcasoy, C.C., “On Cross-Ambiguity Properties of Welch-Costas Arrays”,  IEEE 

Transactions on Aerospace and Electronic Systems, Vol. 30, No. 4, October 1994. 

[6] . Lewis, Bernard, “Aspects of Radar Signal Processing”, Norwood, MA, Artech House, 

INC., 1986. 

[7] . Levanon, Nadav, “PAF of CW Signals with Perfect Periodic Autocorrelation”, IEEE 

Transactions on Aerospace and Electronic System, Vol. 28 No.2, April 1992. 

[8] . Lima, Antonio, “Analysis of Low Probability of Intercept (LPI) Signals using 

Cyclostationary Processing”, Master of Science in System Engineering , Naval 

Postgraduate School, Monterey CA, September 2002. 

[9] . Sattar, Farook,“On Detection Using Filter Banks and Higher Order Statistics”, IEEE 

Transactions on Aerospace and Electronic System, Vol. 36 No.4, October 2000. 

[10] . Sattar, Farrok, “Nonparametric Waveform Estimation Using Filter Banks,” 

Department of Electric and Computer Science, Lund University, Sweden, December 

1993. 

[11] . Mendel, Jerry M., “Signal Processing with Higher-Order Statistics”, IEEE Signal 

Processing Magazine, July 1993. 



270 

[12] . Mendel, Jerry M., “Tutorial on Higher-Order Statistics (Spectra) in Signal Processing 

and System Theory: Theoretical Results and Some Applications”, Proceedings of the 

IEEE, Vol. 79, No. 3, March 1991. 

[13] . Wirth, W. D., “Polyphase Coded CW Radar”, IEEE International Conference of 

Radar, Paris 1989. 

[14] . McLaughlin, S. and Stogioglou, A, “Introducing Higher-Order Statistics (HOS) for 

the Detection of Non-linearities”, 

http://www.amsta.leeds.ac.uk/Applied/news.dir/issues2/hos_intro.html. Accessed on 

March 1, 2002. 

[15] . Haspel, Mitch, “Polyphase Signals for Radar”, IEEE International Conference on 

Communication Systems, Singapore, 1990. 

[16] . Donohoe, J. Patrick, “The Ambiguity Properties of FSK/PSK Signals”, Radar 

Conference, 1990., Record of the IEEE 1990 International , 1990  Page(s): 268 –273 

[17] . Schrick, Gerd, “Interception of LPI Radar Signals”, Proceedings of the IEEE 

International Radar Conference,24-28 April 1989, Paris. 

 

 

 

 

 

    
 

 

 

 
 

  
 
 



271 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
8725 John J. Kingman Rd., STE 0944 
Ft. Belvoir, VA 22060-6218  
 

2. Dudley Knox Library 
 Naval Postgraduate School 
 411 Dyer Rd.  
 Monterey, CA 93943-5121 

 
3. Dan C. Boger, Chairman, Code 37 
 Naval Postgraduate School 

Monterey, CA 93943-5121 
 

4. IW, EW Curricular Officer, Code 37  
 Naval Postgraduate School 

Monterey, CA 93943-5121 
 

5. Prof. Phillip Pace, Code EC 
Naval Postgraduate School 
Monterey, CA 93943-5121 
 

6. Prof. Herschel H. Loomis Jr, Code EC 
Naval Postgraduate School 
Monterey, CA 93943-5121 

 
7. Maj. Fernando Taboada 

6105 Raleigh st. apt. 322 
Orlando, FL 32835 

 
8. Venezuelan Defense Attaché 

Venezuelan Embassy  
2409 California St. NW 
Washington DC 20008 

 
 

 
 
 
 

 
 


